精英家教网 > 高中数学 > 题目详情
1.复数z满足z=$\frac{7+i}{1-2i}$(i为虚数单位),则复数z的共轭复数$\overline{z}$=(  )
A.1+3iB.1-3iC.3-iD.3+i

分析 利用复数代数形式的乘除运算化简,再由共轭复数的概念得答案.

解答 解:∵z=$\frac{7+i}{1-2i}$=$\frac{(7+i)(1+2i)}{(1-2i)(1+2i)}=\frac{5+15i}{5}=1+3i$,
∴$\overline{z}=1-3i$.
故选:B.

点评 本题考查复数代数形式的乘除运算,考查了复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知集合A={-1,0},B={x|-1<x<1},则A∩B=(  )
A.{-1}B.{0}C.{-1,0}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.观察下列各式:1=12,2+3+4=32,3+4+5+6=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是(  )
A.n+(n+1)+(n+2)+…+(3n-2)=n2B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-1)=n2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}\right.$(t为参数,-1≤t≤1),当t=1时,曲线C1上的点为A,当t=-1时,曲线C1上的点为B,以O为极点,x轴的正半轴为极轴建立极坐标系.曲线C2的极坐标方程$ρ=\frac{6}{{\sqrt{4+5{{sin}^2}θ}}}$
(Ⅰ) 求线段AB的极坐标方程;C2的参数方程
(Ⅱ) 设M是曲线C2上的动点,求|MA|2+|MB|2最大值及取最大值时点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$8-\frac{4}{3}π$B.$8-\frac{8}{3}π$C.24-πD.24+π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知$a=\frac{1}{b}>1$,如果方程ax=logbx,bx=logax,bx=logbx的根分别为x1,x2,x3,则x1,x2,x3的大小关系为(  )
A.x3<x1<x2B.x3<x2<x1C.x1<x3<x2D.x1<x2<x3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=4x3+ax2+bx+5在x=-1与x=$\frac{3}{2}$处有极值,则函数的单调递减区间为(-1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}中,a3=2,a7=1,若数列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$是等差数列,则a11等于(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x+y+z=1.
证明:(1)x2+y2+z2≥xy+yz+zx,
(2)x2+y2+z2≥$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案