精英家教网 > 高中数学 > 题目详情
16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$8-\frac{4}{3}π$B.$8-\frac{8}{3}π$C.24-πD.24+π

分析 如图所示,由三视图可知:该几何体为一个正方体在一个角去掉一个球的$\frac{1}{8}$.

解答 解:如图所示,由三视图可知:该几何体为一个正方体在一个角去掉一个球的$\frac{1}{8}$.
∴该几何体的体积=23-$\frac{1}{8}×\frac{4π×{2}^{3}}{3}$=8-$\frac{4π}{3}$.
故选:A.

点评 本题考查了正方体与球的三视图、体积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.在等比数列{an}中,若a1+a2=18,a2+a3=12,则公比q为$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.△ABC的内角A,B,C的对边分别为a,b,c,已知a=bcosC+csinB
(1)求角B的大小;
(2)若$b=4,C=\frac{π}{3}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=$\left\{\begin{array}{l}{-x+1,x<1}\\{{2}^{x}-2,x≥1}\end{array}\right.$,g(x)=$\frac{1}{x}$,若对任意x∈[m,+∞)(m>0),总存在两个x0∈[0,2],使得f(x0)=g(x),则实数m的取值范围是(  )
A.[1,+∞)B.(0,1]C.[$\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设区间D=[-3,3],定义在D上的函数f(x)=ax3+bx+1(a>0,b∈R),集合A={a|?x∈D,f(x)≥0}.???
(1)若b=$\frac{1}{6}$,求集合A;
(2)设常数b<0?
         ①讨论f(x)的单调性;
         ②若b<-1,求证:A=∅.??

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.复数z满足z=$\frac{7+i}{1-2i}$(i为虚数单位),则复数z的共轭复数$\overline{z}$=(  )
A.1+3iB.1-3iC.3-iD.3+i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设a≥b>0,分别用综合法和分析法证明:3a3+2b3≥3a2b+2ab2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an+1-2an}(n∈N*)是公比为2的等比数列,其中a1=1,a2=4.
(Ⅰ)证明:数列$\{\frac{a_n}{2^n}\}$是等差数列;
(Ⅱ)求数列{an}的前n项和Sn
( III)记数列${c_n}=\frac{{2{a_n}-2n}}{n},(n≥2)$,证明:$\frac{1}{2}-{(\frac{1}{2})^n}<\frac{1}{c_2}+\frac{1}{c_3}+…+\frac{1}{c_n}<1-{(\frac{1}{2})^{n-1}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.曲线$y=\frac{lnx}{x}$在x=1处的切线斜率等于1.

查看答案和解析>>

同步练习册答案