5£®ÒÑÖªÊýÁÐ{an+1-2an}£¨n¡ÊN*£©Êǹ«±ÈΪ2µÄµÈ±ÈÊýÁУ¬ÆäÖÐa1=1£¬a2=4£®
£¨¢ñ£©Ö¤Ã÷£ºÊýÁÐ$\{\frac{a_n}{2^n}\}$ÊǵȲîÊýÁУ»
£¨¢ò£©ÇóÊýÁÐ{an}µÄǰnÏîºÍSn£»
£¨ III£©¼ÇÊýÁÐ${c_n}=\frac{{2{a_n}-2n}}{n}£¬£¨n¡Ý2£©$£¬Ö¤Ã÷£º$\frac{1}{2}-{£¨\frac{1}{2}£©^n}£¼\frac{1}{c_2}+\frac{1}{c_3}+¡­+\frac{1}{c_n}£¼1-{£¨\frac{1}{2}£©^{n-1}}$£®

·ÖÎö £¨¢ñ£©Í¨¹ýµÈ±ÈÊýÁеÄͨÏʽ¿ÉÖªan+1-2an=2n£¬Á½¶Ëͬ³ý2n+1¼´µÃ½áÂÛ£»
£¨¢ò£©ÀûÓôíλÏà¼õ·¨¼ÆËã¼´µÃ½áÂÛ£¬
£¨¢ó£©ÀûÓ÷ÅËõ·¨¼´¿ÉÖ¤Ã÷£®

½â´ð ½â£º£¨¢ñ£©Ö¤Ã÷£ºÓÉÒÑÖªµÃ${a_{n+1}}-2{a_n}=£¨{a_2}-2{a_1}£©•{2^{n-1}}={2^n}$£¬
Á½¶Ëͬ³ý2n+1µÃ£º$\frac{{{a_{n+1}}}}{{{2^{n+1}}}}-\frac{a_n}{2^n}=\frac{1}{2}$£¬
ËùÒÔÊýÁÐ$\{\frac{a_n}{2^n}\}$ÊÇÒÔÊ×ÏîΪ$\frac{1}{2}$£¬¹«²îΪ$\frac{1}{2}$µÄµÈ²îÊýÁУ»
£¨¢ò£©ÓÉ£¨¢ñ£©Öª$\frac{a_n}{2^n}=\frac{1}{2}n$£¬ËùÒÔ${a_n}=n•{2^{n-1}}$£¬
${S_n}=1•{2^0}+2•{2^1}+¡­+n•{2^{n-1}}$£¬
Ôò2Sn=1•21+2•22+¡­+n•2n£¬
Ïà¼õµÃ£º$-{S_n}=1•{2^0}+{2^1}+¡­+{2^{n-1}}-n•{2^n}$£¬
ËùÒÔ$-{S_n}=\frac{{1-{2^n}}}{1-2}-n•{2^n}$£¬
¼´${S_n}=£¨n-1£©{2^n}+1$£®                                  
£¨¢ó£©Ö¤Ã÷£ºÊýÁÐcn=2n-2£¬n¡Ý2£¬
¡à$\frac{1}{c_n}=\frac{1}{{{2^n}-2}}£¾\frac{1}{2^n}$£¬
¡à$\frac{1}{c_2}+\frac{1}{c_3}+¡­+\frac{1}{c_n}£¾\frac{1}{2^2}+\frac{1}{2^3}+¡­+\frac{1}{2^n}=\frac{{\frac{1}{4}[1-{{£¨\frac{1}{2}£©}^{n-1}}]}}{{1-\frac{1}{2}}}=\frac{1}{2}-{£¨\frac{1}{2}£©^n}$
ÓÖ¡ß$\frac{1}{c_n}=\frac{1}{{{2^n}-2}}£¼\frac{2}{2^n}={£¨\frac{1}{2}£©^{n-1}}$£¬£¨n¡Ý3£©£¬
µ±n=2ʱ£¬$\frac{1}{c_2}=\frac{1}{2}$£¬
¡à$\frac{1}{{c}_{2}}+\frac{1}{{c}_{3}}+¡­+\frac{1}{{c}_{n}}$£¼$\frac{1}{{2}^{1}}+\frac{1}{{2}^{2}}+¡­+\frac{1}{{2}^{n-1}}$=$\frac{\frac{1}{2}[1-£¨\frac{1}{2}£©^{n-1}]}{1-\frac{1}{2}}$=1-£¨$\frac{1}{2}$£©n-1£¬
ËùÒÔÔ­²»µÈʽµÃÖ¤£®

µãÆÀ ±¾Ì⿼²éÊýÁеÄͨÏǰnÏîºÍ²»µÈʽµÄÖ¤Ã÷£¬¶Ô±í´ïʽµÄÁé»î±äÐμ°´íλÏà¼õ·¨ºÍ·ÅËõÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®¡°Ä²ºÏ·½¸Ç¡±ÊÇÎÒ¹ú¹Å´úÊýѧ¼ÒÁõ΢ÔÚÑо¿ÇòµÄÌå»ýµÄ¹ý³ÌÖй¹ÔìµÄÒ»¸öºÍгÓÅÃÀµÄ¼¸ºÎÌ壬ËüÓÉÍêÈ«ÏàͬµÄËĸöÇúÃæ¹¹³É£¬Ïà¶ÔµÄÁ½¸öÇúÃæÔÚͬһԲÖùµÄ²àÃæÉÏ£¬ºÃËÆÁ½¸ö¿ÛºÏ£¨Ä²ºÏ£©ÔÚÒ»ÆðµÄ·½ÐÎÉ¡£¨·½¸Ç£©£®Èçͼ£¬Õý±ßÐÎABCDÊÇΪÌåÏÖÆäÖ±¹ÛÐÔËù×÷µÄ¸¨ÖúÏߣ¬Èô¸Ã¼¸ºÎÌåµÄÕýÊÓͼÓë²àÊÓͼ¶¼Êǰ뾶ΪrµÄÔ²£¬¸ù¾Ý׿•œÔ­Àí£¬¿ÉÇóµÃ¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$\frac{8}{3}{r^3}$B£®$\frac{8}{3}¦Ð{r^3}$C£®$\frac{16}{3}{r^3}$D£®$\frac{16}{3}¦Ð{r^3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬Ôò¸Ã¼¸ºÎÌåµÄÌå»ýΪ£¨¡¡¡¡£©
A£®$8-\frac{4}{3}¦Ð$B£®$8-\frac{8}{3}¦Ð$C£®24-¦ÐD£®24+¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªº¯Êýf£¨x£©=4x3+ax2+bx+5ÔÚx=-1Óëx=$\frac{3}{2}$´¦Óм«Öµ£¬Ôòº¯ÊýµÄµ¥µ÷µÝ¼õÇø¼äΪ£¨-1£¬$\frac{3}{2}$£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®ÔڵȲîÊýÁÐ{an}ÖУ¬Èôa1£¬a3£¬a4³ÉµÈ±ÈÊýÁУ¬Ôò¸ÃµÈ±ÈÊýÁеĹ«±ÈΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®1C£®1»ò$\frac{1}{2}$D£®ÎÞ·¨È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªÊýÁÐ{an}ÖУ¬a3=2£¬a7=1£¬ÈôÊýÁÐ$\left\{{\frac{1}{{1+{a_n}}}}\right\}$ÊǵȲîÊýÁУ¬Ôòa11µÈÓÚ£¨¡¡¡¡£©
A£®0B£®$\frac{1}{3}$C£®$\frac{1}{6}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑ֪ʵÊýx£¬yÂú×ã-1¡Üx+y¡Ü4ÇÒ2¡Üx-y¡Ü3£¬Ôò²»µÈʽΧ³ÉµÄÇøÓòÃæ»ýΪ$\frac{5}{2}$£¬Ôò2x-3yµÄȡֵ·¶Î§ÊÇ[3£¬8]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªº¯Êýf£¨x£©=£¨x2-a+1£©ex£¬g£¨x£©=£¨x2-2£©ex+2
£¨1£©Èôº¯Êýf£¨x£©ÔÚÇø¼ä[-2£¬2]ÉÏÊǵ¥µ÷º¯Êý£¬ÇóʵÊýaµÄȡֵ·¶Î§£»
£¨2£©Èôf£¨x£©ÓÐÁ½¸ö²»Í¬µÄ¼«Öµµãm£¬n£¨m£¼n£©£¬ÇÒ2£¨m+n£©¡Ümn-1£¬¼ÇF£¨x£©=e2f£¨x£©+g£¨x£©£¬ÇóF£¨m£©µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Èô$\overrightarrow a+\overrightarrow b+\overrightarrow c=\overrightarrow 0$£¬ÇÒ$\overrightarrow a$Óë$\overrightarrow c$µÄ¼Ð½ÇΪ60¡ã£¬$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ¦È£¬$|{\overrightarrow b}|=\sqrt{3}|{\overrightarrow a}|$£¬Ôòtan¦È=£¨¡¡¡¡£©
A£®$\sqrt{3}$B£®$\frac{{\sqrt{3}}}{3}$C£®-$\frac{{\sqrt{3}}}{3}$D£®-$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸