精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\left\{\begin{array}{l}{-x+1,x<1}\\{{2}^{x}-2,x≥1}\end{array}\right.$,g(x)=$\frac{1}{x}$,若对任意x∈[m,+∞)(m>0),总存在两个x0∈[0,2],使得f(x0)=g(x),则实数m的取值范围是(  )
A.[1,+∞)B.(0,1]C.[$\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$]

分析 由分段函数解析式可得函数f(x)在区间[0,2]上满足一个函数值对应两个自变量的函数值的集合A,求出函数g(x)在[m,+∞)(m>0)上的值域B,由B是A的子集求解.

解答 解:f(x)=$\left\{\begin{array}{l}{-x+1,x<1}\\{{2}^{x}-2,x≥1}\end{array}\right.$,
当x∈[0,1)时,f(x)∈(0,1],当x∈[1,2]时,f(x)∈[0,2].
∴一个函数值对应两个自变量的函数值的范围为(0,1].
g(x)=$\frac{1}{x}$在[m,+∞)(m>0)上为减函数,最大值为$\frac{1}{m}$.
∴g(x)的值域为[0,$\frac{1}{m}$].
要使对任意x∈[m,+∞)(m>0),总存在两个x0∈[0,2],使得f(x0)=g(x),
则$\frac{1}{m}$≤1,即m≥1.
∴实数m的取值范围是[1,+∞).
故选:A.

点评 本题考查函数的最值及其几何意义,关键是对题意的理解,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.在2016年高考结束后,针对高考成绩是否达到了考生自己预期水平的情况,某校在高三部分毕业生内部进行了抽样调查,现从高三年级A、B、C、D、E、F六个班随机抽取了50人,将统计结果制成了如下的表格:
班级
抽取人数10 12 12 
其中达到预期水平的人数 3 6 6
(Ⅰ)根据上述表格的数据估计,该校这些班中,哪个班的学生高考成绩达到自己的预期水平的概率较高?
(Ⅱ)若从A班、F班,从抽查到的达到预期水平的所有对象中,再随机选取2名同学进行详细调查,求选取的2人中含有A班同学的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.“牟合方盖”是我国古代数学家刘微在研究球的体积的过程中构造的一个和谐优美的几何体,它由完全相同的四个曲面构成,相对的两个曲面在同一圆柱的侧面上,好似两个扣合(牟合)在一起的方形伞(方盖).如图,正边形ABCD是为体现其直观性所作的辅助线,若该几何体的正视图与侧视图都是半径为r的圆,根据祖暅原理,可求得该几何体的体积为(  )
A.$\frac{8}{3}{r^3}$B.$\frac{8}{3}π{r^3}$C.$\frac{16}{3}{r^3}$D.$\frac{16}{3}π{r^3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.观察下列各式:1=12,2+3+4=32,3+4+5+6=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是(  )
A.n+(n+1)+(n+2)+…+(3n-2)=n2B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-1)=n2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在等差数列{an}中,已知a2+a5=4,an=33,a1=$\frac{1}{3}$,则n是(  )
A.48B.49C.50D.51

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}\right.$(t为参数,-1≤t≤1),当t=1时,曲线C1上的点为A,当t=-1时,曲线C1上的点为B,以O为极点,x轴的正半轴为极轴建立极坐标系.曲线C2的极坐标方程$ρ=\frac{6}{{\sqrt{4+5{{sin}^2}θ}}}$
(Ⅰ) 求线段AB的极坐标方程;C2的参数方程
(Ⅱ) 设M是曲线C2上的动点,求|MA|2+|MB|2最大值及取最大值时点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积为(  )
A.$8-\frac{4}{3}π$B.$8-\frac{8}{3}π$C.24-πD.24+π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=4x3+ax2+bx+5在x=-1与x=$\frac{3}{2}$处有极值,则函数的单调递减区间为(-1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若函数f(x)在区间[-2,2]上是单调函数,求实数a的取值范围;
(2)若f(x)有两个不同的极值点m,n(m<n),且2(m+n)≤mn-1,记F(x)=e2f(x)+g(x),求F(m)的取值范围.

查看答案和解析>>

同步练习册答案