9£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}\right.$£¨tΪ²ÎÊý£¬-1¡Üt¡Ü1£©£¬µ±t=1ʱ£¬ÇúÏßC1ÉϵĵãΪA£¬µ±t=-1ʱ£¬ÇúÏßC1ÉϵĵãΪB£¬ÒÔOΪ¼«µã£¬xÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£®ÇúÏßC2µÄ¼«×ø±ê·½³Ì$¦Ñ=\frac{6}{{\sqrt{4+5{{sin}^2}¦È}}}$
£¨¢ñ£© ÇóÏß¶ÎABµÄ¼«×ø±ê·½³Ì£»C2µÄ²ÎÊý·½³Ì
£¨¢ò£© ÉèMÊÇÇúÏßC2Éϵ͝µã£¬Çó|MA|2+|MB|2×î´óÖµ¼°È¡×î´óֵʱµãMµÄÖ±½Ç×ø±ê£®

·ÖÎö £¨¢ñ£©Çó³öA$£¨-1£¬\sqrt{3}£©£¬B£¨1£¬-\sqrt{3}£©$£¬´Ó¶øÇó³öÏßÈ˶ÎABµÄÖ±½Ç×ø±ê·½³Ì£¬½ø¶øÄÜÇó³öÏß¶ÎABµÄ¼«×ø±ê·½³Ì£»ÇúÏßC2µÄ¼«×ø±ê·½³Ìת»¯Îª4¦Ñ2+5£¨¦Ñsin¦È£©2=36£¬ÓÉ´ËÄÜÇó³öÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£¬´Ó¶øÄÜÇó³öÇúÏßC2µÄ²ÎÊý·½³Ì£®
£¨¢ò£©ÉèÇúÏßC2Éϵ͝µãM£¨3cos¦Á£¬2sin¦Á£©£¬´Ó¶ø|MA|2+|MB|2=£¨3cos¦Á+1£©2+£¨2sin¦Á-$\sqrt{3}$£©2+£¨3 cos¦Á-1£©2+£¨2sin¦Á+$\sqrt{3}$£©2=10cos2¦Á+16¡Ü26£¬ÓÉ´ËÄÜÇó³ö|MA|2+|MB|2µÄ×î´óÖµ¼°¶ÔÓ¦µÄMµã×ø±ê£®

½â´ð ½â£º£¨¢ñ£©¡ßÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}\right.$£¨tΪ²ÎÊý£¬-1¡Üt¡Ü1£©£¬
µ±t=1ʱ£¬ÇúÏßC1ÉϵĵãΪA£¬µ±t=-1ʱ£¬ÇúÏßC1ÉϵĵãΪB£¬
¡àA$£¨-1£¬\sqrt{3}£©£¬B£¨1£¬-\sqrt{3}£©$£¬
¡àÏß¶ÎABµÄÖ±½Ç×ø±ê·½³ÌΪ£º$\frac{y+\sqrt{3}}{x-1}$=$\frac{\sqrt{3}+\sqrt{3}}{-1-1}$=-$\sqrt{3}$£¬£¨-1¡Üx¡Ü1£©£¬
ÕûÀí£¬µÃ£º$\sqrt{3}x+y=0$£¬£¨-1¡Üx¡Ü1£©£¬
¡àÏß¶ÎABµÄ¼«×ø±ê·½³ÌΪ$\sqrt{3}¦Ñcos¦È$+¦Ñsin¦È=0£¬¼´2sin£¨$¦È+\frac{¦Ð}{3}$£©=0£¬£¨¦È¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$]£©£®
¡ßÇúÏßC2µÄ¼«×ø±ê·½³Ì$¦Ñ=\frac{6}{{\sqrt{4+5{{sin}^2}¦È}}}$£¬»¯Îª¦Ñ2£¨4+5sin2¦È£©=36£¬
¡à4¦Ñ2+5£¨¦Ñsin¦È£©2=36£¬
¡àÇúÏßC2µÄÖ±½Ç×ø±ê·½³ÌΪ4£¨x2+y2£©+5y2=36£¬»¯Îª$\frac{{x}^{2}}{9}+\frac{{y}^{2}}{4}$=1£¬
¡àÇúÏßC2µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=3cos¦Á}\\{y=2sin¦Á}\end{array}\right.$£¬£¨¦ÁΪ²ÎÊý£©£®
£¨¢ò£©ÉèÇúÏßC2Éϵ͝µãM£¨3cos¦Á£¬2sin¦Á£©£¬
¡ßA£¨-1£¬$\sqrt{3}$£©£¬B£¨1£¬-$\sqrt{3}$£©£¬
|MA|2+|MB|2=£¨3cos¦Á+1£©2+£¨2sin¦Á-$\sqrt{3}$£©2+£¨3 cos¦Á-1£©2+£¨2sin¦Á+$\sqrt{3}$£©2
=18cos2¦Á+8sin2¦Á+8=10cos2¦Á+16¡Ü26£¬µ±cos¦Á=¡À1ʱ£¬È¡µÃ×î´óÖµ26£®
¡à|MA|2+|MB|2µÄ×î´óÖµÊÇ26£¬´ËʱM£¨3£¬0£©£¬£¨-3£¬0£©£®

µãÆÀ ±¾Ì⿼²éÏ߶εļ«×ø±ê·½³Ì¡¢ÇúÏߵIJÎÊý·½³ÌÇ󷨣¬¿¼²é´úÊýʽµÄ×î´óÖµµÄÇ󷨣¬¿¼²é¼«×ø±ê·½³Ì¡¢Ö±½Ç×ø±ê·½³Ì¡¢²ÎÊý·½³ÌµÄ»¥»¯µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦£¬¿¼²é»¯¹éÓëת»¯Ë¼Ïë¡¢º¯ÊýÓë·½³Ì˼Ï룬ÊÇÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$£¨a£¾b£¾0£©µÄ×ó¶¥µãºÍÉ϶¥µã·Ö±ðΪA£¬B£¬×ó¡¢ÓÒ½¹µã·Ö±ðÊÇF1£¬F2£¬ÔÚÏß¶ÎABÉÏÓÐÇÒ½öÓÐÒ»¸öµãPÂú×ãPF1¡ÍPF2£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®$\frac{{\sqrt{3}}}{2}$B£®$\frac{{\sqrt{3}-1}}{2}$C£®$\frac{{3-\sqrt{5}}}{2}$D£®$\frac{{\sqrt{5}-1}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èô¸´Êýz=2-3i£¬ÔòÔÚ¸´Æ½ÃæÄÚ£¬z¶ÔÓ¦µÄµãµÄ×ø±êÊÇ£¨2£¬-3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚ¡÷ABCÖУ¬Èý¸öÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðÊÇa¡¢b¡¢c£¬ÇÒa¡¢1-b¡¢c³ÉµÈ²îÊýÁУ¬sinA¡¢sinB¡¢sinC³ÉµÈ±ÈÊýÁУ¬ÔòbµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨-¡Þ£¬\frac{2}{3}£©$B£®$£¨-¡Þ£¬\frac{1}{2}]$C£®$£¨0£¬\frac{2}{3}£©$D£®$£¨0£¬\frac{1}{2}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{-x+1£¬x£¼1}\\{{2}^{x}-2£¬x¡Ý1}\end{array}\right.$£¬g£¨x£©=$\frac{1}{x}$£¬Èô¶ÔÈÎÒâx¡Ê[m£¬+¡Þ£©£¨m£¾0£©£¬×Ü´æÔÚÁ½¸öx0¡Ê[0£¬2]£¬Ê¹µÃf£¨x0£©=g£¨x£©£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[1£¬+¡Þ£©B£®£¨0£¬1]C£®[$\frac{1}{2}$£¬+¡Þ£©D£®£¨0£¬$\frac{1}{2}$]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Éè¿Éµ¼º¯Êýy=f£¨x£©¾­¹ýn£¨n¡ÊN£©´ÎÇ󵼺óËùµÃ½á¹ûΪy=f£¨n£©£¨x£©£®Èç¹ûº¯Êýg£¨x£©=x3¾­¹ý1´ÎÇ󵼺óËùµÃ½á¹ûΪg£¨1£©£¨x£©=3x2£®¾­¹ý2´ÎÇ󵼺óËùµÃ½á¹ûΪg£¨2£©£¨x£©=6x£¬¡­£®
£¨1£©Èôf£¨x£©=ln£¨2x+1£©£¬Çóf£¨2£©£¨x£©£®
£¨2£©ÒÑÖªf£¨x£©=p£¨x£©•q£¨x£©£¬ÆäÖÐp£¨x£©•q£¨x£©ÎªRÉϵĿɵ¼º¯Êý£®ÇóÖ¤£ºf£¨n£©£¨x£©=$\sum_{i=0}^{n}$${C}_{n}^{i}$p£¨n-i£©£¨x£©•q£¨i£©£¨x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®¸´ÊýzÂú×ãz=$\frac{7+i}{1-2i}$£¨iΪÐéÊýµ¥Î»£©£¬Ôò¸´ÊýzµÄ¹²éÊý$\overline{z}$=£¨¡¡¡¡£©
A£®1+3iB£®1-3iC£®3-iD£®3+i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®£¨1£©ÒÑÖªa£¾0£¬b£¾0£¬$\frac{1}{b}$-$\frac{1}{a}$£¾1£®ÇóÖ¤£º$\sqrt{1+a}$£¾$\frac{1}{\sqrt{1-b}}$£®
£¨2£©ÓÃÊýѧ¹éÄÉ·¨Ö¤Ã÷$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+¡­+$\frac{1}{n+n}$£¾$\frac{11}{24}$£¨n¡ÊN*£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®²ÎÊý·½³Ì$\left\{\begin{array}{l}x=3+4cos¦È\\ y=-2+4sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬»¯ÎªÆÕͨ·½³ÌΪ£¨x-3£©2+£¨y+2£©2=16£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸