精英家教网 > 高中数学 > 题目详情
19.参数方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ为参数),化为普通方程为(x-3)2+(y+2)2=16.

分析 由cos2θ+sin2θ=1,能把参数方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ为参数)转化为普通方程.

解答 解:∵参数方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ为参数),
∴$\left\{\begin{array}{l}{4cosθ=x-3}\\{4sinθ=y+2}\end{array}\right.$(θ为参数),
由cos2θ+sin2θ=1,
得到参数方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ为参数)的普通方程为:(x-3)2+(y+2)2=16.
故答案为:(x-3)2+(y+2)2=16.

点评 本题考查圆的普通方程的求法、直角坐标方程、参数方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.在直角坐标系xOy中,曲线C1的参数方程为$\left\{\begin{array}{l}x=-t\\ y=\sqrt{3}t\end{array}\right.$(t为参数,-1≤t≤1),当t=1时,曲线C1上的点为A,当t=-1时,曲线C1上的点为B,以O为极点,x轴的正半轴为极轴建立极坐标系.曲线C2的极坐标方程$ρ=\frac{6}{{\sqrt{4+5{{sin}^2}θ}}}$
(Ⅰ) 求线段AB的极坐标方程;C2的参数方程
(Ⅱ) 设M是曲线C2上的动点,求|MA|2+|MB|2最大值及取最大值时点M的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}中,a3=2,a7=1,若数列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$是等差数列,则a11等于(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\vec a=(1,2)$,$\vec b=(1,0)$,$\vec c=(3,4)$.若λ为实数,$(\overrightarrow a+λ\overrightarrow b)∥\overrightarrow c$,则λ=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若函数f(x)在区间[-2,2]上是单调函数,求实数a的取值范围;
(2)若f(x)有两个不同的极值点m,n(m<n),且2(m+n)≤mn-1,记F(x)=e2f(x)+g(x),求F(m)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-ex-1,其中e为自然对数的底数.函数g(x)=(2-e)x.
(1)求函数h(x)=f(x)-g(x)的单调区间;
(2)若函数$F(x)=\left\{\begin{array}{l}f(x),x≤m\\ g(x),x>m\end{array}\right.$的值域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x+y+z=1.
证明:(1)x2+y2+z2≥xy+yz+zx,
(2)x2+y2+z2≥$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸出红球的概率为$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=2.

查看答案和解析>>

同步练习册答案