精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=ex-ex-1,其中e为自然对数的底数.函数g(x)=(2-e)x.
(1)求函数h(x)=f(x)-g(x)的单调区间;
(2)若函数$F(x)=\left\{\begin{array}{l}f(x),x≤m\\ g(x),x>m\end{array}\right.$的值域为R,求实数m的取值范围.

分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)函数的导数,通过讨论m的范围得到函数的值域,从而确定m的具体范围即可.

解答 解:(1)f(x)=ex-ex-1,
h(x)=f(x)-g(x)=ex-2x-1,h′(x)=ex-2,
由h′(x)>0,得x>ln2,由h′(x)<0,解得:x<ln2,
故函数h(x)在(ln2,+∞)递增,在(-∞,ln2)递减;
(2)f(x)=ex-e,
x<1时,f′(x)<0,f(x)在(-∞,1)递减,
x>1时,f′(x)>0,f(x)在(1,+∞)递增,
m≤1时,f(x)在(-∞,m]递减,值域是[em-em-1,+∞),
g(x)=(2-e)x在(m,+∞)递减,值域是(-∞,(2-e)m),
∵F(x)的值域是R,故em-em-1≤(2-e)m,
即em-2m-1≤0,(*),
由(1)m<0时,h(x)=em-2m-1>h(0)=0,故(*)不成立,
∵h(m)在(0,ln2)递减,在(ln2,1)递增,且h(0)=0,h(1)=e-3<0,
∴0≤m≤1时,h(m)≤0恒成立,故0≤m≤1;
m>1时,f(x)在(-∞,1)递减,在(1,m]递增,
故函数f(x)=ex-ex-1在(-∞,m]上的值域是[f(1),+∞),即[-1,+∞),
g(x)=(2-e)x在(m,+∞)上递减,值域是(-∞,(2-e)m),
∵F(x)的值域是R,∴-1≤(2-e)m,即1<m≤$\frac{1}{e-2}$,
综上,m的范围是[0,$\frac{1}{e-2}$];

点评 本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想、考查不等式的证明,是一道综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设可导函数y=f(x)经过n(n∈N)次求导后所得结果为y=f(n)(x).如果函数g(x)=x3经过1次求导后所得结果为g(1)(x)=3x2.经过2次求导后所得结果为g(2)(x)=6x,….
(1)若f(x)=ln(2x+1),求f(2)(x).
(2)已知f(x)=p(x)•q(x),其中p(x)•q(x)为R上的可导函数.求证:f(n)(x)=$\sum_{i=0}^{n}$${C}_{n}^{i}$p(n-i)(x)•q(i)(x).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC中,sinA:sinB:sinC=4:5:6,.则a:b:c=4:5:6,cosA:cosB:cosC=12:9:2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在3张卡片的正反两面上,分别写着数字1和2,4和5,7和8,将它们并排组成三位数,不同的三位数的个数是48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.参数方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ为参数),化为普通方程为(x-3)2+(y+2)2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设F1、F2分别为椭圆C1:$\frac{{x}^{2}}{{a}_{1}^{2}}$+$\frac{{y}^{2}}{{b}_{1}^{2}}$=1(a1>b1>0)与双曲线C2:$\frac{{x}^{2}}{{a}_{2}^{2}}$-$\frac{{y}^{2}}{{b}_{2}^{2}}$=1(a2>b2>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率e1∈[$\frac{3}{4}$,$\frac{2\sqrt{2}}{3}$],则双曲线C2的离心率e2的取值范围为$[\frac{2\sqrt{14}}{7},\frac{3\sqrt{2}}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知两向量$\vec a$与$\vec b$满足$|{\vec a}|=4,|{\vec b}|=2$,且$({\vec a+2\vec b})•({\vec a+\vec b})=12$,则$\vec a$与$\vec b$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.把$-\frac{1999π}{5}$表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ的值是$\frac{π}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知离心率为$\frac{\sqrt{2}}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(-1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆C的方程;
(2)直线AB:y=k(x+1)交椭圆C于A、B两点,交直线l:x=-2于点M,设直线PA、PB、PM的斜率依次为k1、k2、k3,问k1、k3、k2是否成等差数列,请说明理由.

查看答案和解析>>

同步练习册答案