9£®ÉèF1¡¢F2·Ö±ðΪÍÖÔ²C1£º$\frac{{x}^{2}}{{a}_{1}^{2}}$+$\frac{{y}^{2}}{{b}_{1}^{2}}$=1£¨a1£¾b1£¾0£©ÓëË«ÇúÏßC2£º$\frac{{x}^{2}}{{a}_{2}^{2}}$-$\frac{{y}^{2}}{{b}_{2}^{2}}$=1£¨a2£¾b2£¾0£©µÄ¹«¹²½¹µã£¬ËüÃÇÔÚµÚÒ»ÏóÏÞÄÚ½»ÓÚµãM£¬¡ÏF1MF2=90¡ã£¬ÈôÍÖÔ²µÄÀëÐÄÂÊe1¡Ê[$\frac{3}{4}$£¬$\frac{2\sqrt{2}}{3}$]£¬ÔòË«ÇúÏßC2µÄÀëÐÄÂÊe2µÄȡֵ·¶Î§Îª$[\frac{2\sqrt{14}}{7}£¬\frac{3\sqrt{2}}{2}]$£®

·ÖÎö ÀûÓÃÍÖÔ²ÓëË«ÇúÏߵ͍ÒåÁгö·½³Ì£¬Í¨¹ý¹´¹É¶¨ÀíÇó½âÀëÐÄÂʼ´¿É£®

½â´ð ½â£ºÓÉÍÖÔ²ÓëË«ÇúÏߵ͍Ò壬֪|MF1|+|MF2|=2a1£¬|MF1|-|MF2|=2a2£¬
ËùÒÔ|MF1|=a1+a2£¬|MF2|=a1-a2£®
ÒòΪ¡ÏF1MF2=90¡ã£¬
ËùÒÔ|MF1|2+|MF2|2=4c2£¬¼´a12+a22=2c2£¬¼´£¨$\frac{1}{{e}_{1}}$£©2+£¨$\frac{1}{{e}_{2}}$£©2=2£¬
ÍÖÔ²µÄÀëÐÄÂÊe1¡Ê[$\frac{3}{4}$£¬$\frac{2\sqrt{2}}{3}$]£¬
ËùÒÔ$£¨\frac{1}{{e}_{1}}£©^{2}$¡Ê[$\frac{9}{8}$£¬$\frac{16}{9}$]£¬Ôò£¨$\frac{1}{{e}_{2}}$£©2¡Ê[$\frac{2}{9}$£¬$\frac{7}{8}$]£®
ËùÒÔe2¡Ê$[\frac{2\sqrt{14}}{7}£¬\frac{3\sqrt{2}}{2}]$£®
¹Ê´ð°¸Îª£º$[\frac{2\sqrt{14}}{7}£¬\frac{3\sqrt{2}}{2}]$£®

µãÆÀ ±¾Ì⿼²éË«ÇúÏßÒÔ¼°ÍÖÔ²µÄ¼òµ¥ÐÔÖʵÄÓ¦Ó㬿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®ÒÑÖªÅ×ÎïÏßC£ºy2=4xµÄ½¹µãΪF£¬µãP£¨2£¬t£©ÎªÅ×ÎïÏßCÉÏÒ»µã£¬Ôò|PF|=3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èôº¯Êýf£¨x£©=x3+3ax-1ÔÚx=1´¦µÄÇÐÏßÓëÖ±Ïßy=6x+6ƽÐУ¬ÔòʵÊýa=1£»
µ±a¡Ü0ʱ£¬Èô·½³Ìf£¨x£©=15ÓÐÇÒÖ»ÓÐÒ»¸öʵ¸ù£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª-$\root{3}{16}$£¼a¡Ü0£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÔÖ±½Ç×ø±êϵµÄÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬Ô²$\left\{\begin{array}{l}x=1+cos¦È\\ y=sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©µÄ¼«×ø±ê·½³ÌÊǦÑ=2cos¦È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=ex-ex-1£¬ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£®º¯Êýg£¨x£©=£¨2-e£©x£®
£¨1£©Çóº¯Êýh£¨x£©=f£¨x£©-g£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôº¯Êý$F£¨x£©=\left\{\begin{array}{l}f£¨x£©£¬x¡Üm\\ g£¨x£©£¬x£¾m\end{array}\right.$µÄÖµÓòΪR£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖª¼¯ºÏA={x|x¡Ü1}£¬B={x|x2-x¡Ü0}£¬ÔòA¡ÉB=£¨¡¡¡¡£©
A£®{x|x¡Ü-1}B£®{x|-1¡Üx¡Ü0}C£®{x|0¡Üx¡Ü1}D£®{x|1¡Üx¡Ü2}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®Ôڶ۽ǡ÷ABCÖУ¬½ÇA£¬B£¬CËù¶ÔµÄ±ß·Ö±ðΪA£¬B£¬CÇÒb=atanB£®
£¨¢ñ£©ÇóA-BµÄÖµ£»
£¨¢ò£©ÇósinA+sinBµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Ö±Ïßy-1=m£¨x+2£©¾­¹ýÒ»¶¨µã£¬Ôò¸ÃµãµÄ×ø±êÊÇ£¨¡¡¡¡£©
A£®£¨-2£¬1£©B£®£¨2£¬1£©C£®£¨1£¬-2£©D£®£¨1£¬2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªa+b£¾0£¬b=4a£¬£¨a+b£©nµÄÕ¹¿ªÊ½°´aµÄ½µÃÝÅÅÁУ¬ÆäÖеÚn ÏîÓëµÚn+1ÏîÏàµÈ£¬ÄÇôÕýÕûÊýnµÈÓÚ£¨¡¡¡¡£©
A£®4B£®9C£®10D£®11

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸