精英家教网 > 高中数学 > 题目详情
17.以直角坐标系的原点为极点,x轴正半轴为极轴建立极坐标系,圆$\left\{\begin{array}{l}x=1+cosθ\\ y=sinθ\end{array}\right.$(θ为参数)的极坐标方程是ρ=2cosθ.

分析 用x,y表示出cosθ,sinθ,根据同角三角函数的关系消去θ得出直角坐标方程,再将x=ρcosθ,y=ρsinθ代入直角坐标方程得到极坐标方程.

解答 解:由 $\left\{\begin{array}{l}{x=1+cosθ}\\{y=sinθ}\end{array}\right.$得cosθ=x-1,sinθ=y.
∵cos2θ+sin2θ=1,∴(x-1)2+y2=1.即x2+y2=2x.
∵x2+y22,x=ρcosθ,∴ρ2=2ρcosθ,即ρ=2cosθ.
故答案为:ρ=2cosθ.

点评 本题考查了参数方程与普通方程、极坐标方程的互化,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知点A(1,$\sqrt{2}$)是离心率为$\frac{\sqrt{2}}{2}$的椭圆C:$\frac{x^2}{b^2}+\frac{y^2}{a^2}=1$(a>b>0)上的一点,斜率为$\sqrt{2}$的直线BD交椭圆C于B、D两点,且A、B、D三点不重合
( I)求椭圆C的方程;
( II)求证:直线AB,AD的斜率之和为定值
( III)△ABD面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若α为钝角,$cosα=-\frac{3}{5}$,则$cos\frac{α}{2}$的值为(  )
A.$\frac{{\sqrt{5}}}{5}$B.$-\frac{{\sqrt{5}}}{5}$C.$\frac{{2\sqrt{5}}}{5}$D.$-\frac{{2\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设f(x)是定义在R上的奇函数,当x≤0时,f(x)=3x2-2x,则f(1)=(  )
A.5B.1C.-1D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在3张卡片的正反两面上,分别写着数字1和2,4和5,7和8,将它们并排组成三位数,不同的三位数的个数是48.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数$f(x)=({m+\frac{1}{m}})lnx+\frac{1}{x}-x$,(其中常数m>0)
(1)当m=2时,求f(x)的极大值;
(2)试讨论f(x)在区间(0,1)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设F1、F2分别为椭圆C1:$\frac{{x}^{2}}{{a}_{1}^{2}}$+$\frac{{y}^{2}}{{b}_{1}^{2}}$=1(a1>b1>0)与双曲线C2:$\frac{{x}^{2}}{{a}_{2}^{2}}$-$\frac{{y}^{2}}{{b}_{2}^{2}}$=1(a2>b2>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若椭圆的离心率e1∈[$\frac{3}{4}$,$\frac{2\sqrt{2}}{3}$],则双曲线C2的离心率e2的取值范围为$[\frac{2\sqrt{14}}{7},\frac{3\sqrt{2}}{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.一个人在打靶中连续射击两次,事件“至少有一次中靶”的互斥事件是(  )
A.至多有一次中靶B.两次都中靶C.两次都不中靶D.只有一次中靶

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.点P是双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的右支上一点,点M,N分别是圆(x+5)2+y2=4和(x-5)2+y2=1上的动点,则|PM|-|PN|的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案