14£®ÒÑÖªÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$µÄÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãP£¨-1£¬$\frac{\sqrt{2}}{2}$£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±ÏßAB£ºy=k£¨x+1£©½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬½»Ö±Ïßl£ºx=-2ÓÚµãM£¬ÉèÖ±ÏßPA¡¢PB¡¢PMµÄбÂÊÒÀ´ÎΪk1¡¢k2¡¢k3£¬ÎÊk1¡¢k3¡¢k2ÊÇ·ñ³ÉµÈ²îÊýÁУ¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂʹ«Ê½£¬½«P´úÈëÍÖÔ²·½³Ì£¬¼´¿ÉÇóµÃaºÍbµÄÖµ£¬ÇóµÃÍÖÔ²·½³Ì£»
£¨2£©ÓÉÖ±Ïß·½³Ì£¬ÇóµÃMµã×ø±ê£¬½«Ö±Ïß·½³Ì´úÈëÍÖÔ²·½³Ì£¬ÀûÓÃΤ´ï¶¨Àí¼°Ö±ÏßµÄбÂʹ«Ê½ÑéÖ¤ÊÇ·ñk1+k2=2k3£¬µÈʽ³ÉÁ¢£¬Èô³ÉÁ¢Ôòk1¡¢k3¡¢k2³ÉµÈ²îÊýÁУ®·ñÔò²»³ÉµÈ²îÊýÁУ®

½â´ð ½â£º£¨1£©ÓÉÍÖÔ²µÄÀëÐÄÂÊe=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬Ôòa=$\sqrt{2}$c£¬Ôòb2=a2-c2=c2£¬
¡à½«P£¨-1£¬$\frac{\sqrt{2}}{2}$£©´úÈëÍÖÔ²·½³Ì£º$\frac{{x}^{2}}{2{c}^{2}}+\frac{{y}^{2}}{{c}^{2}}=1$£¬¼´$\frac{1}{2{c}^{2}}+\frac{1}{2{c}^{2}}=1$£¬½âµÃ£ºc=1£¬
Ôòa=$\sqrt{2}$£¬b=1£¬
¡àÍÖÔ²µÄ±ê×¼·½³Ì£º$\frac{{x}^{2}}{2}+{y}^{2}=1$£»
£¨2£©ÓÉ£¨1£©¿ÉÖª£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬Ö±ÏßAB£ºy=k£¨x+1£©£¬kÏÔÈ»´æÔÚÇÒ²»Îª0£¬
$\left\{\begin{array}{l}{y=k£¨x+1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬ÕûÀíµÃ£º£¨1+2k2£©x2+4k2x+2k2-2=0£¬
Ôòx1+x2=-$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬y1=k£¨x1+1£©£¬y2=k£¨x2+1£©£¬
µ±x=-2ʱ£¬y=-k£¬ÔòM£¨-2£¬-k£©£¬
Ôòk1=$\frac{{y}_{1}-\frac{\sqrt{2}}{2}}{{x}_{1}+1}$£¬k2=$\frac{{y}_{2}-\frac{\sqrt{2}}{2}}{{x}_{2}+1}$£¬k3=$\frac{\sqrt{2}}{2}$+k£¬
ÓÉk1+k2=$\frac{{y}_{1}-\frac{\sqrt{2}}{2}}{{x}_{1}+1}$+$\frac{{y}_{2}-\frac{\sqrt{2}}{2}}{{x}_{2}+1}$=$\frac{£¨{y}_{1}-\frac{\sqrt{2}}{2}£©£¨{x}_{2}+1£©+£¨{y}_{2}+\frac{\sqrt{2}}{2}£©£¨{x}_{1}+1£©}{£¨{x}_{1}+1£©£¨{x}_{2}+1£©}$=$\frac{2k{x}_{1}{x}_{2}+2k£¨{x}_{1}+{x}_{2}£©-\frac{\sqrt{2}}{2}£¨{x}_{1}+{x}_{2}£©+2k-\sqrt{2}}{{x}_{1}{x}_{2}+£¨{x}_{1}+{x}_{2}£©+1}$£¬
=2k+$\sqrt{2}$£¬
¡àk1+k2=2k3£¬
¡àk1¡¢k3¡¢k2³ÉµÈ²îÊýÁУ®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬¿¼²éÖ±ÏߺÍÍÖÔ²·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬Ö±ÏßµÄбÂʹ«Ê½ºÍµÈ²îÊýÁÐÖÐÏîÐÔÖÊ£¬¿¼²é»¯¼òÕûÀíµÄÔËËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÒÑÖªº¯Êýf£¨x£©=ex-ex-1£¬ÆäÖÐeΪ×ÔÈ»¶ÔÊýµÄµ×Êý£®º¯Êýg£¨x£©=£¨2-e£©x£®
£¨1£©Çóº¯Êýh£¨x£©=f£¨x£©-g£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Èôº¯Êý$F£¨x£©=\left\{\begin{array}{l}f£¨x£©£¬x¡Üm\\ g£¨x£©£¬x£¾m\end{array}\right.$µÄÖµÓòΪR£¬ÇóʵÊýmµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªÅ×ÎïÏß·½³ÌΪy2=4x£¬µãQµÄ×ø±êΪ£¨2£¬3£©£¬PΪÅ×ÎïÏßÉ϶¯µã£¬ÔòµãPµ½×¼ÏߵľàÀëÓëµ½µãQµÄ¾àÀëÖ®ºÍµÄ×îСֵΪ$\sqrt{10}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾1£©µÄ³¤Ö᳤Ϊ2$\sqrt{2}$£¬PΪÍÖÔ²CÉÏÒìÓÚ¶¥µãµÄÒ»¸ö¶¯µã£¬OÎª×ø±êÔ­µã£¬A2ΪÍÖÔ²CµÄÓÒ¶¥µã£¬µãMΪÏß¶ÎPA2µÄÖе㣬ÇÒÖ±ÏßPA2ÓëÖ±ÏßOMµÄбÂÊÖ®»ýºãΪ-$\frac{1}{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£®
£¨2£©¹ýÍÖÔ²CµÄ×ó½¹µãF1ÇÒ²»Óë×ø±êÖá´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏßÓëxÖá½»ÓÚµãN£¬µãNµÄºá×ø±êµÄȡֵ·¶Î§ÊÇ£¨-$\frac{1}{4}$£¬0£©£¬ÇóÏß¶ÎAB³¤µÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÒÑÖªÏòÁ¿$\overrightarrow a$Óë$\overrightarrow b$µÄ¼Ð½ÇΪ60¡ã£¬|$\overrightarrow{a}$|=2£¬|$\overrightarrow{b}$|=2£¬Ôò|$\overrightarrow{a}$-$\overrightarrow{b}$|=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖªa+b£¾0£¬b=4a£¬£¨a+b£©nµÄÕ¹¿ªÊ½°´aµÄ½µÃÝÅÅÁУ¬ÆäÖеÚn ÏîÓëµÚn+1ÏîÏàµÈ£¬ÄÇôÕýÕûÊýnµÈÓÚ£¨¡¡¡¡£©
A£®4B£®9C£®10D£®11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖª¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©Âú×ãf£¨x+2£©=2f£¨x£©£¬ÇÒµ±x¡Ê[2£¬4]ʱ£¬$f£¨x£©=\left\{\begin{array}{l}-{x^2}+4x£¬2¡Üx¡Ü3\\ \frac{{{x^2}+2}}{x}£¬3£¼x¡Ü4\end{array}\right.$£¬g£¨x£©=ax+1£¬¶Ô?x1¡Ê[-2£¬0]£¬?x2¡Ê[-2£¬1]£¬Ê¹µÃg£¨x2£©=f£¨x1£©£¬ÔòʵÊýaµÄȡֵ·¶Î§Îª£¨¡¡¡¡£©
A£®$£¨{-¡Þ£¬-\frac{1}{8}}£©¡È[{\frac{1}{8}£¬+¡Þ}£©$B£®$[{-\frac{1}{4}£¬0}£©¡È£¨{0£¬\frac{1}{8}}]$C£®£¨0£¬8]D£®$£¨{-¡Þ£¬-\frac{1}{4}}]¡È[{\frac{1}{8}£¬+¡Þ}£©$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑ֪ʵÊýx£¬yÂú×ã²»µÈʽ×é$\left\{{\begin{array}{l}{x-y-2¡Ü0}\\{x+2y-5¡Ý0}\\{y-2¡Ü0}\end{array}}\right.$Ä¿±êº¯Êýz=2log4y-log2x£¬ÔòzµÄ×î´óֵΪ1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®½ü´úͳ¼ÆÑ§µÄ·¢Õ¹ÆðÔ´ÓÚ¶þÊ®ÊÀ¼Í³õ£¬ËüÊÇÔÚ¸ÅÂÊÂ۵Ļù´¡ÉÏ·¢Õ¹ÆðÀ´µÄ£¬Í³¼ÆÐÔÖʵŤ×÷¿ÉÒÔ×·Ëݵ½Ô¶¹ÅµÄ¡°½áÉþ¼ÇÊ¡±ºÍ¡¶¶þÊ®ËÄÊ·¡·ÖдóÁ¿µÄ¹ØÓÚÎÒÈ˿ڡ¢Ç®Á¸¡¢Ë®ÎÄ¡¢ÌìÎÄ¡¢µØÕðµÈ×ÊÁϵļǼ£®½ü¼¸Ä꣬Îíö²À´Ï®£¬¶ÔijÊиÃÄê11Ô·ݵÄÌìÆøÇé¿ö½øÐÐͳ¼Æ£¬½á¹ûÈçÏ£º±íÒ»
ÈÕÆÚ123456789101112131415
ÌìÆøÇçö²ö²Òõö²ö²Òõö²ö²ö²ÒõÇçö²ö²ö²
ÈÕÆÚ161718192021222324252627282930
ÌìÆøö²ö²ö²ÒõÇçö²ö²Ççö²Ççö²ö²ö²Ççö²
ÓÉÓÚ´ËÖÖÇé¿öijÊÐÕþ¸®Îª¼õÉÙÎíö²ÓÚ´ÎÄê²ÉÈ¡ÁËÈ«ÄêÏÞÐеÄÕþ²ß£®
ϱíÊÇÒ»¸öµ÷–Ë»ú¹¹¶Ô±ÈÒÔÉÏÁ½Äê11Ô·ݣ¨¸ÃÄê²»ÏÞÐÐ30Ìì¡¢´ÎÄêÏÞÐÐ30Ìì¹²60Ì죩µÄµ÷²é½á¹û£º
±í¶þ
²»ÏÞÐÐÏÞÐÐ×ܼÆ
ûÓÐÎíö²a
ÓÐÎíö²b
×ܼÆ303060
£¨1£©ÇëÓɱíÒ»Êý¾ÝÇóa£¬b£¬²¢ÇóÔÚ¸ÃÄê11Ô·ÝÈÎȡһÌ죬¹À¼Æ¸ÃÊÐÊÇÇçÌìµÄ¸ÅÂÊ£»
£¨2£©ÇëÓÃͳ¼ÆÑ§Ô­Àí¼ÆËãÈôûÓÐ90%µÄ°ÑÎÕÈÏΪÎíö²ÓëÏÞÐÐÓйØÏµ£¬ÔòÏÞÐÐʱÓжàÉÙÌìûÓÐÎíö²£¿
£¨ÓÉÓÚ²»ÄÜʹÓüÆËãÆ÷£¬ËùÒÔ±íÖÐÊý¾ÝʹÓÃʱËÄÉáÎåÈëÈ¡ÕûÊý£©
P£¨K2¡Ýk£©0.1000.0500.0100.001
k2.7063.8416.63510.828
${K^2}=\frac{{n{{£¨{ad-bc}£©}^2}}}{{£¨{a+b}£©£¨{a+d}£©£¨{a+c}£©£¨{b+d}£©}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸