2£®ÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾1£©µÄ³¤Ö᳤Ϊ2$\sqrt{2}$£¬PΪÍÖÔ²CÉÏÒìÓÚ¶¥µãµÄÒ»¸ö¶¯µã£¬OÎª×ø±êÔ­µã£¬A2ΪÍÖÔ²CµÄÓÒ¶¥µã£¬µãMΪÏß¶ÎPA2µÄÖе㣬ÇÒÖ±ÏßPA2ÓëÖ±ÏßOMµÄбÂÊÖ®»ýºãΪ-$\frac{1}{2}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£®
£¨2£©¹ýÍÖÔ²CµÄ×ó½¹µãF1ÇÒ²»Óë×ø±êÖá´¹Ö±µÄÖ±Ïßl½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬Ïß¶ÎABµÄ´¹Ö±Æ½·ÖÏßÓëxÖá½»ÓÚµãN£¬µãNµÄºá×ø±êµÄȡֵ·¶Î§ÊÇ£¨-$\frac{1}{4}$£¬0£©£¬ÇóÏß¶ÎAB³¤µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÀûÓÃÍÖÔ²QµÄ³¤Ö᳤Ϊ2$\sqrt{2}$£¬Çó³öa£®ÉèP£¨x0£¬y0£©£¬Í¨¹ýÖ±ÏßPA2ÓëOMµÄбÂÊÖ®»ýºãΪ-$\frac{1}{2}$£¬Áз½³Ì»¯¼ò»¯¼òÇó³öb£¬¼´¿ÉµÃµ½ÍÖÔ²·½³Ì£®
£¨2£©ÉèÖ±Ïßl·½³ÌΪy=k£¨x+1£©£¨k¡Ù0£©£¬´úÈëÍÖÔ²·½³Ì»¯¼ò£¬ÀûÓÃΤ´ï¶¨ÀíÇó³öABµÄ´¹Ö±Æ½·ÖÏß·½³Ì£¬µÃ³öNµãºá×ø±ê£¬´Ó¶øµÃ³ök2µÄ·¶Î§£¬ÀûÓÃÏÒ³¤¹«Ê½µÃ³ö|AB|»¯¼ò£¬¼´³öµÃ³ö|AB|µÄ·¶Î§£®

½â´ð ½â£º£¨1£©¡ßÍÖÔ²QµÄ³¤Ö᳤Ϊ2$\sqrt{2}$£¬¡àa=$\sqrt{2}$£®¡àA2£¨$\sqrt{2}$£¬0£©£¬
ÉèP£¨x0£¬y0£©£¬ÔòM£¨$\frac{{x}_{0}+\sqrt{2}}{2}$£¬$\frac{{y}_{0}}{2}$£©£¬
¡ßÖ±ÏßPA2ÓëOMµÄбÂÊÖ®»ýºãΪ-$\frac{1}{2}$£¬
¡à$\frac{{y}_{0}}{{x}_{0}+\sqrt{2}}$•$\frac{{y}_{0}}{{x}_{0}-\sqrt{2}}$=-$\frac{1}{2}$£¬
¡à$\frac{{{x}_{0}}^{2}}{2}$+y02=1£¬¡àb=1£¬
¹ÊÍÖÔ²µÄ·½³ÌΪ$\frac{{x}^{2}}{2}+{y}^{2}$=1£®
£¨2£©ÉèÖ±Ïßl·½³ÌΪy=k£¨x+1£©£¨k¡Ù0£©£¬
ÁªÁ¢·½³Ì×é$\left\{\begin{array}{l}{y=k£¨x+1£©}\\{\frac{{x}^{2}}{2}+{y}^{2}=1}\end{array}\right.$£¬µÃ£¨1+2k2£©x2+4k2x+2k2-2=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ABÖеãN£¨x0£¬y0£©£¬
¡àx1+x2=-$\frac{4{k}^{2}}{1+2{k}^{2}}$£¬x1x2=$\frac{2{k}^{2}-2}{1+2{k}^{2}}$£¬
¡àx0=$\frac{1}{2}$£¨x1+x2£©=-$\frac{2{k}^{2}}{1+2{k}^{2}}$£¬y0=k£¨x0+1£©=$\frac{k}{1+2{k}^{2}}$£¬
¡àABµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪ£ºy-$\frac{k}{1+2{k}^{2}}$=-$\frac{1}{k}$£¨x+$\frac{2{k}^{2}}{1+2{k}^{2}}$£©£¬
Áîy=0µÃx=-$\frac{{k}^{2}}{1+2{k}^{2}}$£®
¡à-$\frac{1}{4}$£¼-$\frac{{k}^{2}}{1+2{k}^{2}}$£¼0£¬
½âµÃ£º0£¼k2$£¼\frac{1}{2}$£®
¡ß|AB|=$\sqrt{1+{k}^{2}}$$\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{1+{k}^{2}}$•$\frac{\sqrt{16{k}^{4}-4£¨2{k}^{2}+1£©£¨2{k}^{2}-2£©}}{1+2{k}^{2}}$
=2$\sqrt{2}$[$\frac{1}{2}+$$\frac{1}{2£¨2{k}^{2}+1£©}$]£¬
¡à$\frac{3\sqrt{2}}{2}$£¼|AB|£¼2$\sqrt{2}$£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌµÄÇ󷨣¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµµÄÓ¦Óã¬ÏÒ³¤¹«Ê½µÄÓ¦Óã¬Éè¶ø²»ÇóµÄ˼Ïë·½·¨£¬¿¼²é¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ3ÕÅ¿¨Æ¬µÄÕý·´Á½ÃæÉÏ£¬·Ö±ðд×ÅÊý×Ö1ºÍ2£¬4ºÍ5£¬7ºÍ8£¬½«ËüÃDz¢ÅÅ×é³ÉÈýλÊý£¬²»Í¬µÄÈýλÊýµÄ¸öÊýÊÇ48£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®°Ñ$-\frac{1999¦Ð}{5}$±íʾ³É¦È+2k¦Ð£¨k¡ÊZ£©µÄÐÎʽ£¬Ê¹|¦È|×îСµÄ¦ÈµÄÖµÊÇ$\frac{¦Ð}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖª½Ç¦ÁµÄÖÕ±ßÓ뵥λԲÏཻÓÚµã$P£¨{{{\frac{4}{5}}_{\;}}£¬-\frac{3}{5}}£©$£¬ÏÖ½«½Ç¦ÁµÄÖÕ±ßÈÆ×ø±êÔ­µãÑØÄæÊ±Õë·½ÏòÐýת$\frac{¦Ð}{3}$£¬ËùµÃÉäÏßÓ뵥λԲÏཻÓÚµãQ£¬ÔòµãQµÄºá×ø±êΪ£¨¡¡¡¡£©
A£®$\frac{{4+3\sqrt{3}}}{10}$B£®$\frac{{4-3\sqrt{3}}}{10}$C£®$\frac{{3+4\sqrt{3}}}{10}$D£®$\frac{{4\sqrt{3}-3}}{10}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÊýÁÐ{an}Âú×ãa1=2£¬a2=1£¬²¢ÇÒ$\frac{{a}_{n}}{{a}_{n-1}}$+$\frac{{a}_{n}}{{a}_{n+1}}$=2£¨n¡Ý2£©£¬ÔòÊýÁÐ{an}µÄµÚ100ÏîΪ£¨¡¡¡¡£©
A£®$\frac{1}{{{2^{100}}}}$B£®$\frac{1}{{{2^{50}}}}$C£®$\frac{1}{100}$D£®$\frac{1}{50}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®µãPÊÇË«ÇúÏß$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1µÄÓÒÖ§ÉÏÒ»µã£¬µãM£¬N·Ö±ðÊÇÔ²£¨x+5£©2+y2=4ºÍ£¨x-5£©2+y2=1Éϵ͝µã£¬Ôò|PM|-|PN|µÄ×îСֵΪ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$µÄÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©¹ýµãP£¨-1£¬$\frac{\sqrt{2}}{2}$£©£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Ö±ÏßAB£ºy=k£¨x+1£©½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬½»Ö±Ïßl£ºx=-2ÓÚµãM£¬ÉèÖ±ÏßPA¡¢PB¡¢PMµÄбÂÊÒÀ´ÎΪk1¡¢k2¡¢k3£¬ÎÊk1¡¢k3¡¢k2ÊÇ·ñ³ÉµÈ²îÊýÁУ¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®ÒÑÖª£¨1+x£©+£¨1+x£©2+£¨1+x£©3+¡­+£¨1+x£©nµÄÕ¹¿ªÊ½ÖÐxµÄϵÊýÇ¡ºÃÊÇÊýÁÐ{an}µÄǰnÏîºÍSn£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÊýÁÐ{bn}Âú×ã${b_n}=\frac{{{2^{a_n}}}}{{£¨{{2^{a_n}}-1}£©£¨{{2^{{a_{n+1}}}}-1}£©}}$£¬¼ÇÊýÁÐ{bn}µÄǰnÏîºÍΪTn£¬ÇóÖ¤£ºTn£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ä³Ó¡Ë¢³§ÎªÁËÑо¿Ó¡Ë¢µ¥²áÊé¼®µÄ³É±¾y£¨µ¥Î»£ºÔª£©ÓëÓ¡Ë¢²áÊýx£¨µ¥Î»£ºÇ§²á£©Ö®¼äµÄ¹ØÏµ£¬ÔÚӡ֯ijÖÖÊ鼮ʱ½øÐÐÁËͳ¼Æ£¬Ïà¹ØÊý¾Ý¼ûÏÂ±í£º
Ó¡Ë¢²áÊýx£¨Ç§²á£©23458
µ¥²á³É±¾y£¨Ôª£©3.22.421.91.7
¸ù¾ÝÒÔÉÏÊý¾Ý£¬¼¼ÊõÈËÔ±·Ö±ð½èÖú¼×¡¢ÒÒÁ½ÖÖ²»Í¬µÄ»Ø¹éÄ£ÐÍ£¬µÃµ½Á½¸ö»Ø¹é·½³Ì£¬·½³Ì¼×£º${\hat y^{£¨1£©}}=\frac{4}{x}+1.1$£¬·½³ÌÒÒ£º${\hat y^{£¨2£©}}=\frac{6.4}{x^2}+1.6$£®
£¨I£©ÎªÁËÆÀ¼ÛÁ½ÖÖÄ£Ð͵ÄÄâºÏЧ¹û£¬Íê³ÉÒÔÏÂÈÎÎñ£®
¢ÙÍê³ÉÏÂ±í£¨¼ÆËã½á¹û¾«È·µ½0.1£©£»
Ó¡Ë¢²áÊýx£¨Ç§²á£©23458
µ¥²á³É±¾y£¨Ôª£©3.22.421.91.7
Ä£Ðͼ׹À¼ÆÖµ${\hat y_i}^{£¨1£©}$2.42.11.6
²Ð²î${\hat e_i}^{£¨1£©}$0-0.10.1
Ä£ÐÍÒÒ¹À¼ÆÖµ${\hat y_i}^{£¨2£©}$2.321.9
²Ð²î${\hat e_i}^{£¨2£©}$0.100
¢Ú·Ö±ð¼ÆËãÄ£Ðͼ×ÓëÄ£ÐÍÒÒµÄ²Ð²îÆ½·½ºÍQ1¼°Q2£¬²¢±È½ÏQ1£¬Q2µÄ´óС£¬ÅжÏÄĸöÄ£ÐÍÄâºÏЧ¹û¸üºÃ£®
£¨II£©¸ÃÊéÉÏÊÐÖ®ºó£¬Êܵ½¹ã´ó¶ÁÕßÈÈÁÒ»¶Ó­£¬²»¾Ã±ãÈ«²¿ÊÛóÀ£¬ÓÚÊÇÓ¡Ë¢³§¾ö¶¨½øÐжþ´ÎÓ¡Ë¢£®¸ù¾ÝÊг¡µ÷²é£¬ÐÂÐèÇóÁ¿Îª8ǧ²á£¨¸ÅÂÊ0.7£©»ò16ǧ²á£¨¸ÅÂÊ0.3£©£¬ÈôÓ¡Ë¢³§ÒÔÿ²á5ÔªµÄ¼Û¸ñ½«Êé¼®³öÊÛ¸ø¶©»õÉÌ£¬¹À¼ÆÓ¡Ë¢³§¶þ´ÎÓ¡Ë¢8ǧ²á»¹ÊÇ16ǧ²áÄÜ»ñµÃ¸ü¶àÀûÈ󣿣¨°´£¨1£©ÖÐÄâºÏЧ¹û½ÏºÃµÄÄ£ÐͼÆËãÓ¡Ë¢µ¥²áÊéµÄ³É±¾£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸