分析 (1)根据二项式定理可得${S_n}=\frac{1}{2}{n^2}+\frac{1}{2}n$,继而求出数列的通项公式;
(2)根据“裂项求和“即可证明.
解答 (1)解:(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展开式中x的系数为$C_1^1+C_2^1+C_3^1+…+C_n^1=C_2^2+C_2^1+C_3^1+…+C_n^1$=$C_{n+1}^2=\frac{1}{2}{n^2}+\frac{1}{2}n$,
即${S_n}=\frac{1}{2}{n^2}+\frac{1}{2}n$,
所以当n≥2时,an=Sn-Sn-1=n.
当n=1时,a1=1也适合上式.
所以数列{an}的通项公式为an=n.
(2)证明:${b_n}=\frac{2^n}{{({{2^n}-1})({{2^{n+1}}-1})}}=\frac{1}{{{2^n}-1}}-\frac{1}{{{2^{n+1}}-1}}$,
所以${T_n}=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{7}+…+\frac{1}{{{2^n}-1}}-\frac{1}{{{2^{n+1}}-1}}=1-\frac{1}{{{2^{n+1}}-1}}$,
所以Tn<1.
点评 本题考查了二项式定理,前n项和公式、“裂项求和”、递推式的应用,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 9 | C. | 10 | D. | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-∞,-\frac{1}{8}})∪[{\frac{1}{8},+∞})$ | B. | $[{-\frac{1}{4},0})∪({0,\frac{1}{8}}]$ | C. | (0,8] | D. | $({-∞,-\frac{1}{4}}]∪[{\frac{1}{8},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $y=\sqrt{x}$ | B. | y=tanx | C. | $y=x+\frac{1}{x}$ | D. | y=ex-e-x |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分不必要条件 | B. | 必要不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com