精英家教网 > 高中数学 > 题目详情
1.函数$y=\sqrt{x}+\sqrt{1-x}$的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 两边平方计算y2的最大值,即可得出y的最大值.

解答 解:y2=1+2$\sqrt{x-{x}^{2}}$,0≤x≤1,
∵x-x2=-(x-$\frac{1}{2}$)2+$\frac{1}{4}$,
∴当x=$\frac{1}{2}$时,x-x2取得最大值$\frac{1}{4}$,
∴y2的最大值为1+2$\sqrt{\frac{1}{4}}$=2,
又y=$\sqrt{x}$+$\sqrt{1-x}$>0,
∴y的最大值为$\sqrt{2}$.
故选B.

点评 本题考查了二次函数的性质,函数最值的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知(1+x)+(1+x)2+(1+x)3+…+(1+x)n的展开式中x的系数恰好是数列{an}的前n项和Sn
(1)求数列{an}的通项公式;
(2)数列{bn}满足${b_n}=\frac{{{2^{a_n}}}}{{({{2^{a_n}}-1})({{2^{{a_{n+1}}}}-1})}}$,记数列{bn}的前n项和为Tn,求证:Tn<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
印刷册数x(千册)23458
单册成本y(元)3.22.421.91.7
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到两个回归方程,方程甲:${\hat y^{(1)}}=\frac{4}{x}+1.1$,方程乙:${\hat y^{(2)}}=\frac{6.4}{x^2}+1.6$.
(I)为了评价两种模型的拟合效果,完成以下任务.
①完成下表(计算结果精确到0.1);
印刷册数x(千册)23458
单册成本y(元)3.22.421.91.7
模型甲估计值${\hat y_i}^{(1)}$2.42.11.6
残差${\hat e_i}^{(1)}$0-0.10.1
模型乙估计值${\hat y_i}^{(2)}$2.321.9
残差${\hat e_i}^{(2)}$0.100
②分别计算模型甲与模型乙的残差平方和Q1及Q2,并比较Q1,Q2的大小,判断哪个模型拟合效果更好.
(II)该书上市之后,受到广大读者热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷.根据市场调查,新需求量为8千册(概率0.7)或16千册(概率0.3),若印刷厂以每册5元的价格将书籍出售给订货商,估计印刷厂二次印刷8千册还是16千册能获得更多利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.一个圆经过椭圆$\frac{x^2}{16}+\frac{y^2}{4}=1$的三个顶点,且圆心在x轴的负半轴上,则该圆的标准方程为${({x+\frac{3}{2}})^2}+{y^2}=\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x3+x.
(1)求函数g(x)=f(x)-4x的单调区间;
(2)求曲线y=f(x)在点(1,f(1))处的切线l与坐标轴围成的三角形的面积;
(3)若函数F(x)=f(x)-ax2在(0,3]上递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图所示,已知AB,CD是圆O中两条互相垂直的直径,两个小圆与圆O以及AB,CD均相切,则往圆O内投掷一个点,该点落在阴影部分的概率为(  )
A.12-8$\sqrt{2}$B.3-2$\sqrt{2}$C.8-5$\sqrt{2}$D.6-4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=lnx+x2
(Ⅰ)求函数h(x)=f(x)-3x的极值;
(Ⅱ)若函数g(x)=f(x)-ax在定义域内为增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在△ABC中,已知点D在BC边上,AD⊥AC,AB=2$\sqrt{5}$,sin∠BAC=$\frac{{\sqrt{5}}}{3}$,AD=3,则BD的长为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知向量$\overrightarrow{a}$=(3,-4),则与$\overrightarrow{a}$反向的单位向量的坐标为$(-\frac{3}{5},\frac{4}{5})$.

查看答案和解析>>

同步练习册答案