精英家教网 > 高中数学 > 题目详情
15.已知向量$\overrightarrow{a}$=(3,-4),则与$\overrightarrow{a}$反向的单位向量的坐标为$(-\frac{3}{5},\frac{4}{5})$.

分析 与$\overrightarrow{a}$反向的单位向量的坐标=-$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$.

解答 解:与$\overrightarrow{a}$反向的单位向量的坐标=-$\frac{\overrightarrow{a}}{|\overrightarrow{a}|}$=-$\frac{(3,-4)}{\sqrt{{3}^{2}+(-4)^{2}}}$=$(-\frac{3}{5},\frac{4}{5})$.
故答案为:$(-\frac{3}{5},\frac{4}{5})$.

点评 本题考查了向量共线定理、数量积运算性质、单位向量,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.函数$y=\sqrt{x}+\sqrt{1-x}$的最大值为(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设等差数列{an}满足(1-a10085+2016(1-a1008)=1,(1-a10095+2016(1-a1009)=-1,数列{an}的前n项和记为Sn,则(  )
A.S2016=2016,a1008>a1009B.S2016=-2016,a1008>a1009
C.S2016=2016,a1008<a1009D.S2016=-2016,a1008<a1009

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)=2x-1+log2x的零点所在的一个区间是($\frac{1}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{x+1}{{x}^{2}+a}$(a>0).
(1)若f(x)在(1,f(1))处的切线方程为x+2y+b=0,求a+b的值;
(2)若f(x)在区间[1,+∞)上的最大值为$\frac{1}{4}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=$\frac{1+alnx}{x}$(a∈R).
(1)当a=1时,求函数f(x)的极值;
(2)讨论函数f(x)的单调性;
(3)证明:ln($\frac{1}{{2}^{2}}$+1)+ln($\frac{1}{{3}^{2}}$+1)+…+ln($\frac{1}{{n}^{2}}$+1)<1(n≥2,n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知圆C的圆心为原点,且与截直线$x+y+2\sqrt{6}=0$所得弦长等于圆的半径.
(1)求圆C的半径;
(2)点P在直线x=8上,过P点引圆C的两条切线PA,PB,切点为A,B,是否存在定点M使得直线AB恒过定点?若存在,求出定点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知$\overrightarrow a$=(2,1),
(1)如果|$\overrightarrow b$|=$2\sqrt{5}$,且向量$\overrightarrow a$与$\overrightarrow b$共线,求$\overrightarrow b$的坐标表示;
(2)如果|$\overrightarrow b$|=$2\sqrt{10}$,且向量$\overrightarrow a$与$\overrightarrow b$夹角为$\frac{3π}{4}$,求$\overrightarrow b$的坐标表示.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.某几何体三视如图,则该几何体体积是16;

查看答案和解析>>

同步练习册答案