分析 (1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;
(2)求出函数的导数,计算f(1),f′(1)的值,求出切线方程,求出三角形的面积即可;
(3)问题转化为2a≤(3x+$\frac{1}{x}$)min,根据不等式的性质求出a的范围即可.
解答 解:(1)g(x)=x3-3x,g′(x)=3(x+1)(x-1),
令g′(x)>0,解得:x>1或x<-1,
令g′(x)<0,解得:-1<x<1,
故g(x)在(-∞,-1)递增,在(-1,1)递减,在(1,+∞)递增;
(2)f′(x)=3x2+1,f(1)=2,f′(1)=4,
故切线方程是:y-2=4(x-1),即y=4x-2,
令x=0,解得:y=-2,令y=0,解得:x=$\frac{1}{2}$,
故S△=$\frac{1}{2}$×2×$\frac{1}{2}$=$\frac{1}{2}$;
(3)由题意得F′(x)=3x2+1-2ax≥0在(0,3]恒成立,
故2a≤(3x+$\frac{1}{x}$)min,
∵3x+$\frac{1}{x}$≥2$\sqrt{3}$,∴2a≤2$\sqrt{3}$,a≤$\sqrt{3}$.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,考查切线方程问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | $({-∞,-\frac{1}{8}})∪[{\frac{1}{8},+∞})$ | B. | $[{-\frac{1}{4},0})∪({0,\frac{1}{8}}]$ | C. | (0,8] | D. | $({-∞,-\frac{1}{4}}]∪[{\frac{1}{8},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 日期 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
| 天气 | 晴 | 霾 | 霾 | 阴 | 霾 | 霾 | 阴 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 霾 |
| 日期 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
| 天气 | 霾 | 霾 | 霾 | 阴 | 晴 | 霾 | 霾 | 晴 | 霾 | 晴 | 霾 | 霾 | 霾 | 晴 | 霾 |
| 不限行 | 限行 | 总计 | |
| 没有雾霾 | a | ||
| 有雾霾 | b | ||
| 总计 | 30 | 30 | 60 |
| P(K2≥k) | 0.100 | 0.050 | 0.010 | 0.001 |
| k | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 14π | B. | 7π | C. | 21π | D. | 28π |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com