分析 (1)根据数列的递推公式可得Sn-n+2=2[Sn-1-(n-1)+2],即可证明,
(2)利用分组求和求出Tn,再利用作差法比较大小即可
解答 解:(1)证明:注意到n=1时,S1-1+2=4,
n≥2时原式转化为:Sn=2(Sn-Sn-1)=n-4,即Sn=2Sn-1-n+4,
所以Sn-n+2=2[Sn-1-(n-1)+2],
所以{Sn-n+2}为首项为4,公比为2等比数列.
(2)由(1)知:Sn-n+2=2n+1,所以Sn=2n+1+n-2,
于是Tn=(22+23+…+2n+1)+(1+2+…+n)-2n
=$\frac{{4(1-{2^n})}}{1-2}+\frac{n(n+1)}{2}-2n$=$\frac{{{2^{n+3}}+{n^2}-3n-8}}{2}$.
所以${T_n}-{2^{n+2}}+5n$=$\frac{{{2^{n+3}}+{n^2}-3n-8}}{2}-{2^{n+2}}+5n$=$\frac{1}{2}(n-1)(n+8)$,
因为n≥1,所以${T_n}-{2^{n+2}}+5n≥0$即${T_n}≥{2^{n+2}}-5n$,当且仅当n=1时取等号.
点评 本题主要考查等比数列的求和与等比关系的确定,解答本题的关键是熟练掌握等比数列的性质,并熟练掌握数列的求和公式,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{{2^{100}}}}$ | B. | $\frac{1}{{{2^{50}}}}$ | C. | $\frac{1}{100}$ | D. | $\frac{1}{50}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{3}{10}$ | C. | $\frac{2}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 工种类别 | A | B | C |
| 赔付频率 | $\frac{1}{1{0}^{5}}$ | $\frac{2}{1{0}^{5}}$ | $\frac{1}{1{0}^{4}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{6}{7}$ | B. | $\frac{5}{7}$ | C. | $\frac{3}{7}$ | D. | $\frac{1}{7}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 印刷册数x(千册) | 2 | 3 | 4 | 5 | 8 |
| 单册成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 |
| 印刷册数x(千册) | 2 | 3 | 4 | 5 | 8 | |
| 单册成本y(元) | 3.2 | 2.4 | 2 | 1.9 | 1.7 | |
| 模型甲 | 估计值${\hat y_i}^{(1)}$ | 2.4 | 2.1 | 1.6 | ||
| 残差${\hat e_i}^{(1)}$ | 0 | -0.1 | 0.1 | |||
| 模型乙 | 估计值${\hat y_i}^{(2)}$ | 2.3 | 2 | 1.9 | ||
| 残差${\hat e_i}^{(2)}$ | 0.1 | 0 | 0 | |||
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | nn | B. | n2 | C. | 2n | D. | n |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com