精英家教网 > 高中数学 > 题目详情
18.某学校上午安排上四节课,每节课时间为40分钟,第一节课上课时间为8:00~8:40,课间休息10分钟.某学生因故迟到,若他在9:10~10:00之间到达教室,则他听第二节课的时间不少于10分钟的概率为(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{4}{5}$

分析 由题意,此学生在9:10~10:00之间随机到达教室,区间长度为50,他听第二节课的时间不少于10分钟,则他在9:10~9:20之间随机到达教室,区间长度为10,即可求出概率

解答 解:他在9:10~10:00之间随机到达教室,区间长度为50,他听第二节课的时间不少于10分钟,则他在9:10~9:20之间随机到达教室,区间长度为10,
∴他在9:10~10:00之间随机到达教室,则他听第二节课的时间不少于10分钟的概率是$\frac{10}{50}$=$\frac{1}{5}$,
故选:A

点评 本题主要考查几何概型中的长度类型,解决的关键是找到问题的分界点,分清是长度,面积,还是体积类型,再应用概率公式求解.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸出红球的概率为$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)满足f(x+2)=2f(x),且当x∈[2,4]时,$f(x)=\left\{\begin{array}{l}-{x^2}+4x,2≤x≤3\\ \frac{{{x^2}+2}}{x},3<x≤4\end{array}\right.$,g(x)=ax+1,对?x1∈[-2,0],?x2∈[-2,1],使得g(x2)=f(x1),则实数a的取值范围为(  )
A.$({-∞,-\frac{1}{8}})∪[{\frac{1}{8},+∞})$B.$[{-\frac{1}{4},0})∪({0,\frac{1}{8}}]$C.(0,8]D.$({-∞,-\frac{1}{4}}]∪[{\frac{1}{8},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=2lnx-2mx+x2(m>0).
(1)讨论函数f(x)的单调性;
(2)当m≥$\frac{{3\sqrt{2}}}{2}$时,若函数f(x)的导函数f'(x)的图象与x轴交于A,B两点,其横坐标分别为x1,x2(x1<x2),线段AB的中点的横坐标为x0,且x1,x2恰为函数h(x)=lnx-cx2-bx零的点,求证:(x1-x2)h'(x0)≥-$\frac{2}{3}$+ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足不等式组$\left\{{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}}\right.$目标函数z=2log4y-log2x,则z的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2mlnx-x,g(x)=$\frac{{3{e^x}-3}}{x^2}$(m∈R,e为自然对数的底数).
(1)试讨论函数f(x)的极值情况;
(2)证明:当m>1且x>0时,总有g(x)+3f'(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知Sn为数列{an}的前n项和,且满足Sn-2an=n-4.
(1)证明{Sn-n+2}为等比数列;
(2)设数列{Sn}的前n项和Tn,比较Tn与2n+2-5n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.三棱锥D-ABC中,AB=CD=$\sqrt{6}$,其余四条棱长均为2,则三棱锥D-ABC的外接球的表面积为(  )
A.14πB.C.21πD.28π

查看答案和解析>>

同步练习册答案