精英家教网 > 高中数学 > 题目详情
9.已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$-$\overrightarrow{b}$|=2.

分析 利用平面向量的模长平方与其平方相等,将所求平方展开,利用数量积计算平方值,然后开方求值.

解答 解:由已知向量$\overrightarrow a$与$\overrightarrow b$的夹角为60°,|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=2,则|$\overrightarrow{a}$-$\overrightarrow{b}$|2=${\overrightarrow{a}}^{2}-2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$=4+4-4=4;
所以|$\overrightarrow{a}$-$\overrightarrow{b}$|=2;
故答案为:2.

点评 本题考查了向量的模长计算;利用了向量的模长平方与其平方相等.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.参数方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ为参数),化为普通方程为(x-3)2+(y+2)2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知A(3,2)和B(-1,4)两点到直线mx+y+3=0的距离相等,则m的值为-6或$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.数列{an}满足a1=2,a2=1,并且$\frac{{a}_{n}}{{a}_{n-1}}$+$\frac{{a}_{n}}{{a}_{n+1}}$=2(n≥2),则数列{an}的第100项为(  )
A.$\frac{1}{{{2^{100}}}}$B.$\frac{1}{{{2^{50}}}}$C.$\frac{1}{100}$D.$\frac{1}{50}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若a,b∈R,i是虚数单位,且b+(a-1)i=1+i,则a+b的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知离心率为$\frac{\sqrt{2}}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点P(-1,$\frac{\sqrt{2}}{2}$).
(1)求椭圆C的方程;
(2)直线AB:y=k(x+1)交椭圆C于A、B两点,交直线l:x=-2于点M,设直线PA、PB、PM的斜率依次为k1、k2、k3,问k1、k3、k2是否成等差数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知i为虚数单位,若复数$z=\frac{1-ti}{1+i}$在复平面内对应的点在第四象限,则t的取值范围为(  )
A.[-1,1]B.(-1,1)C.(-∞,-1)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.某学校上午安排上四节课,每节课时间为40分钟,第一节课上课时间为8:00~8:40,课间休息10分钟.某学生因故迟到,若他在9:10~10:00之间到达教室,则他听第二节课的时间不少于10分钟的概率为(  )
A.$\frac{1}{5}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≥1\\ y≥3x-6\end{array}\right.$,则x2+y2+2(x-y)的最小值为$\frac{1}{2}$.

查看答案和解析>>

同步练习册答案