精英家教网 > 高中数学 > 题目详情
15.某保险公司针对一个拥有20000人的企业推出一款意外险产品,每年每位职工只要交少量保费,发生意外后可一次性获得若干赔偿金.保险公司把企业的所有岗位共分为A、B、C三类工种,从事三类工种的人数分布比例如图,根据历史数据统计出三类工种的赔付频率如下表(并以此估计赔付频率).
工种类别ABC
赔付频率$\frac{1}{1{0}^{5}}$$\frac{2}{1{0}^{5}}$$\frac{1}{1{0}^{4}}$
对于A、B、C三类工种职工每人每年保费分别为a元,a元,b元,出险后的赔偿金额分别为100万元,100万元,50万元,保险公司在开展此项业务过程中的固定支出为每年10万元.
(Ⅰ)若保险公司要求利润的期望不低于保费的20%,试确定保费a、b所要满足的条件;
(Ⅱ)现有如下两个方案供企业选择;
方案1:企业不与保险公司合作,企业自行拿出与保险提供的等额的赔偿金额赔付给出险职工;
方案2:企业与保险公司合作,企业负责职工保费的60%,职工个人负责保费的40%,出险后赔偿金由保险公司赔付.
若企业选择方案2的支出(不包括职工支出)低于选择方案1的支出期望,求保费a、b所要满足的条件,并判断企业是否可与保险公司合作.(若企业选择方案2的支出低于选择方案1的支出期望,且与(Ⅰ)中保险公司所提条件不矛盾,则企业可与保险公司合作.)

分析 (Ⅰ)设工种A,B,C职工的每份保单保险公司的效益为随机变量X,Y,Z,
写出随机变量X、Y、Z的分布列,计算保险公司期望收益EX、EY、EZ;
根据要求列出不等式,求出a、b满足的条件;
(Ⅱ)计算企业不与保险公司合作时安全支出(即赔偿金的期望值),
以及企业与保险公司合作的安全支出(即保费),比较大小.

解答 解:(Ⅰ)设工种A,B,C职工的每份保单保险公司的效益为随机变量X,Y,Z,
则随机变量X的分布列为:

Xaa-100×104
P$1-\frac{1}{{{{10}^5}}}$$\frac{1}{{{{10}^5}}}$
随机变量Y的分布列为:
Yaa-100×104
P$1-\frac{2}{{{{10}^5}}}$$\frac{2}{{{{10}^5}}}$
随机变量Z的分布列为:
Zbb-50×104
P$1-\frac{1}{{{{10}^4}}}$$\frac{1}{{{{10}^4}}}$
保险公司期望收益为$EX=a×({1-\frac{1}{{{{10}^5}}}})$$+(a-100×{10^4})×({\frac{1}{{{{10}^5}}}})$=a-10,
$EY=a×({1-\frac{2}{{{{10}^5}}}})+(a-100×{10^4})×({\frac{2}{{{{10}^5}}}})$=a-20,
$EZ=b×({1-\frac{1}{{{{10}^4}}}})+(b-50×{10^4})×({\frac{1}{{{{10}^4}}}})$=b-50;
根据要求(a-10)×20000×0.6+(a-20)×20000×0.3+(b-50)×20000×0.1-10×104
≥(a×20000×0.6+a×20000×0.3+b×20000×0.1)×0.2,
解得9a+b≥275,
所以每张保单的保费需要满足9a+b≥275元;
(Ⅱ)若该企业不与保险公司合作,则安全支出,
即赔偿金的期望值为
20000×0.6×$\frac{1}{{10}^{5}}$×100×104+0.3×$\frac{2}{{10}^{5}}$×100×104+0.1×$\frac{1}{{10}^{4}}$×50×104=17×20000;
若该企业与保险公司合作,则安全支出,
即保费为20000×(0.6×a+0.3×a+0.1×b)×0.6=(0.9×a+0.1×b)×0.6×20000;
解得9a+b<283.33,
结果与(Ⅰ)不冲突,所以企业有可能与保险公司合作.

点评 本题考查了离散型随机变量的分布列与数学期望的计算问题,也考查了不等式的应用问题,是综合题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知抛物线方程为y2=4x,点Q的坐标为(2,3),P为抛物线上动点,则点P到准线的距离与到点Q的距离之和的最小值为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知定义在R上的函数f(x)满足f(x+2)=2f(x),且当x∈[2,4]时,$f(x)=\left\{\begin{array}{l}-{x^2}+4x,2≤x≤3\\ \frac{{{x^2}+2}}{x},3<x≤4\end{array}\right.$,g(x)=ax+1,对?x1∈[-2,0],?x2∈[-2,1],使得g(x2)=f(x1),则实数a的取值范围为(  )
A.$({-∞,-\frac{1}{8}})∪[{\frac{1}{8},+∞})$B.$[{-\frac{1}{4},0})∪({0,\frac{1}{8}}]$C.(0,8]D.$({-∞,-\frac{1}{4}}]∪[{\frac{1}{8},+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足不等式组$\left\{{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}}\right.$目标函数z=2log4y-log2x,则z的最大值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2mlnx-x,g(x)=$\frac{{3{e^x}-3}}{x^2}$(m∈R,e为自然对数的底数).
(1)试讨论函数f(x)的极值情况;
(2)证明:当m>1且x>0时,总有g(x)+3f'(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知m为实数,i为虚数单位,若复数z=$\frac{m+2i}{1+i}$,则“m>-2”是“复数z在复平面上对应的点在第四象限”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知Sn为数列{an}的前n项和,且满足Sn-2an=n-4.
(1)证明{Sn-n+2}为等比数列;
(2)设数列{Sn}的前n项和Tn,比较Tn与2n+2-5n的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.近代统计学的发展起源于二十世纪初,它是在概率论的基础上发展起来的,统计性质的工作可以追溯到远古的“结绳记事”和《二十四史》中大量的关于我人口、钱粮、水文、天文、地震等资料的记录.近几年,雾霾来袭,对某市该年11月份的天气情况进行统计,结果如下:表一
日期123456789101112131415
天气
日期161718192021222324252627282930
天气
由于此种情况某市政府为减少雾霾于次年采取了全年限行的政策.
下表是一个调査机构对比以上两年11月份(该年不限行30天、次年限行30天共60天)的调查结果:
表二
不限行限行总计
没有雾霾a
有雾霾b
总计303060
(1)请由表一数据求a,b,并求在该年11月份任取一天,估计该市是晴天的概率;
(2)请用统计学原理计算若没有90%的把握认为雾霾与限行有关系,则限行时有多少天没有雾霾?
(由于不能使用计算器,所以表中数据使用时四舍五入取整数)
P(K2≥k)0.1000.0500.0100.001
k2.7063.8416.63510.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知数列{an}为等比数列,an>0,a1=2,2a2+a3=30.
(Ⅰ)求an
(Ⅱ)若数列{bn}满足,bn+1=bn+an,b1=a2,求b5=?

查看答案和解析>>

同步练习册答案