精英家教网 > 高中数学 > 题目详情
13.把$-\frac{1999π}{5}$表示成θ+2kπ(k∈Z)的形式,使|θ|最小的θ的值是$\frac{π}{5}$.

分析 写出把$-\frac{1999π}{5}$表示成θ+2kπ(k∈Z)的形式的最大负角θ与最小正角θ值,比较得答案.

解答 解:由$-\frac{1999π}{5}$=-400π+$\frac{π}{5}$或$-\frac{1999π}{5}$=-398π-$\frac{9}{5}π$,
知使|θ|最小的θ的值是$\frac{π}{5}$.
故答案为:$\frac{π}{5}$.

点评 本题考查终边相同角的概念,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的首项a1=2,前n项和为Sn,$3{S_n}-4,{a_n},2-\frac{{3{S_{n-1}}}}{2},(n≥2)$总是成等差数列.
(1)证明数列{an}为等比数列;
(2)求满足不等式${a_n}<{(-4)^{n-1}}$的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=ex-ex-1,其中e为自然对数的底数.函数g(x)=(2-e)x.
(1)求函数h(x)=f(x)-g(x)的单调区间;
(2)若函数$F(x)=\left\{\begin{array}{l}f(x),x≤m\\ g(x),x>m\end{array}\right.$的值域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在钝角△ABC中,角A,B,C所对的边分别为A,B,C且b=atanB.
(Ⅰ)求A-B的值;
(Ⅱ)求sinA+sinB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.一个袋中装有6个红球和4个白球(这10个球各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次摸出红球的概率为$\frac{5}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.直线y-1=m(x+2)经过一定点,则该点的坐标是(  )
A.(-2,1)B.(2,1)C.(1,-2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知抛物线方程为y2=4x,点Q的坐标为(2,3),P为抛物线上动点,则点P到准线的距离与到点Q的距离之和的最小值为$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>1)的长轴长为2$\sqrt{2}$,P为椭圆C上异于顶点的一个动点,O为坐标原点,A2为椭圆C的右顶点,点M为线段PA2的中点,且直线PA2与直线OM的斜率之积恒为-$\frac{1}{2}$.
(1)求椭圆C的方程.
(2)过椭圆C的左焦点F1且不与坐标轴垂直的直线l交椭圆C于A、B两点,线段AB的垂直平分线与x轴交于点N,点N的横坐标的取值范围是(-$\frac{1}{4}$,0),求线段AB长的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知实数x,y满足不等式组$\left\{{\begin{array}{l}{x-y-2≤0}\\{x+2y-5≥0}\\{y-2≤0}\end{array}}\right.$目标函数z=2log4y-log2x,则z的最大值为1.

查看答案和解析>>

同步练习册答案