分析 由正弦定理得出sinA:sinB:sinC=a:b:c;设a=4k,b=5k,c=6k,由余弦定理求得cosA、cosB和cosC的值.
解答 解:△ABC中,由正弦定理知,
sinA:sinB:sinC=a:b:c=4:5:6;
设a=4k:b=5k:c=6k,(其中k≠0),
由余弦定理得cosA=$\frac{2{5k}^{2}+3{6k}^{2}-1{6k}^{2}}{2×5k×6k}$=$\frac{3}{4}$,
cosB=$\frac{1{6k}^{2}+3{6k}^{2}-2{5k}^{2}}{2×4k×6k}$=$\frac{9}{16}$,
cosC=$\frac{1{6k}^{2}+2{5k}^{2}-3{6k}^{2}}{2×4k×5k}$=$\frac{1}{8}$,
∴cosA:cosB:cosC=$\frac{3}{4}$:$\frac{9}{16}$:$\frac{1}{8}$=12:9:2.
故答案为:4:5:6,12:9:2.
点评 本题考查了正弦、余弦定理的灵活应用问题,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x3<x1<x2 | B. | x3<x2<x1 | C. | x1<x3<x2 | D. | x1<x2<x3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 1 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com