5£®ÏÂÁÐ˵·¨ÕýÈ·µÄÓУ¨¡¡¡¡£©
£¨1£©{an}ºÍ{bn}¶¼ÊǵȲîÊýÁУ¬Ôò{an+bn}ΪµÈ²îÊýÁÐ
£¨2£©{an}ÊǵȲîÊýÁУ¬Ôòam£¬am+k£¬am+2k£¬am+3k£¬¡­£¨k£¬m¡ÊN+£©ÎªµÈ²îÊýÁÐ
£¨3£©Èô{an}ΪµÈ±ÈÊýÁУ¬ÆäÖÐan£¾0£¬Ôò{lgan}ΪµÈ²îÊýÁУ»Èô{an}ΪµÈ²îÊýÁУ¬Ôò$\{{2^{a_n}}\}$ΪµÈ±ÈÊýÁУ®
£¨4£©Èô{an}ΪµÈ±ÈÊýÁУ¬Ôò$\{a_n^2\}$£¬{|an|}¶¼ÎªµÈ±ÈÊýÁУ®
A£®1¸öB£®2¸öC£®3¸öD£®4¸ö

·ÖÎö ÀûÓõȲîÊýÁÐÒÔ¼°µÈ±ÈÊýÁеÄÐÔÖÊÅжϼ´¿É£®

½â´ð ½â£º£¨1£©{an}ºÍ{bn}¶¼ÊǵȲîÊýÁУ¬Ôò{an+bn}ΪµÈ²îÊýÁУ¬ÕýÈ·£¬{an+bn}µÄÊ×ÏîΪ£ºa1+b1£¬¹«²îΪ£ºÔ­ÊýÁеĹ«²îµÄºÍ£®
£¨2£©{an}ÊǵȲîÊýÁУ¬Ôòam£¬am+k£¬am+2k£¬am+3k£¬¡­£¨k£¬m¡ÊN+£©ÎªµÈ²îÊýÁУ¬ÕýÈ·£¬Ô­ÊýÁеĹ«²îΪd£¬ÔòÐÂÊýÁÐÖУºam+k=am+kd£®¿ÉµÃ2am+k=am+am+2k£¬2am+2k=am+k+am+2k£¬ËùÒÔÊýÁÐÊǵȲîÊýÁУ®
£¨3£©Èô{an}ΪµÈ±ÈÊýÁУ¬ÆäÖÐan£¾0£¬Ôò{lgan}ΪµÈ²îÊýÁУ»Èô{an}ΪµÈ²îÊýÁУ¬Ôò$\{{2^{a_n}}\}$ΪµÈ±ÈÊýÁУ®ÓÉÖ¸Êýº¯ÊýÓë¶ÔÊýʽµÄÔËËã·¨Ôò¿ÉÖª£¬ÅжÏÊÇÕýÈ·µÄ£»
£¨4£©Èô{an}ΪµÈ±ÈÊýÁУ¬Ôò$\{a_n^2\}$£¬{|an|}¶¼ÎªµÈ±ÈÊýÁУ®ÕýÈ·£¬ÐÂÊýÁеĹ«±È·Ö±ðΪԭÊýÁй«±ÈµÄƽ·½ºÍ¹«±ÈµÄ¾ø¶ÔÖµ£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éµÈ²îÊýÁÐÒÔ¼°µÈ±ÈÊýÁеļòµ¥ÐÔÖʵÄÓ¦Óã¬ÊÇ»ù±¾ÖªÊ¶µÄ¿¼²é£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®ÒÑÖªÊýÁÐ{an}ΪµÈ±ÈÊýÁУ¬an£¾0£¬a1=2£¬2a2+a3=30£®
£¨¢ñ£©Çóan£»
£¨¢ò£©ÈôÊýÁÐ{bn}Âú×㣬bn+1=bn+an£¬b1=a2£¬Çóbn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÍÖÔ²G£º$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ¶ÌÖá¶Ëµãµ½ÓÒ½¹µãF2£¨1£¬0£©µÄ¾àÀëΪ2£¬Æ½ÐÐËıßÐÎABCDµÄËĸö¶¥µã¶¼ÔÚÍÖÔ²GÉÏ£®
£¨¢ñ£©ÇóÍÖÔ²GµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±ÏßABºÍADµÄбÂÊ´æÔÚÇÒ·Ö±ðΪk1£¬k2£¬Ö¤Ã÷£ºk1•k2Ϊ¶¨Öµ£»
£¨¢ó£©µ±Ö±ÏßABºÍDC·Ö±ð¹ýÍÖÔ²GµÄ×ó½¹µãF1ºÍÓÒ½¹µãF2ʱ£¬ÇóËıßÐÎABCDÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èô6x2+4y2+6xy=1£¬x£¬y¡ÊR£¬Ôòx2-y2µÄ×î´óֵΪ$\frac{1}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®Èô¸´Êýz=2-3i£¬ÔòÔÚ¸´Æ½ÃæÄÚ£¬z¶ÔÓ¦µÄµãµÄ×ø±êÊÇ£¨2£¬-3£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®ÒÑÖªa£¾b£¬ÏÂÁйØÏµÊ½ÖÐÒ»¶¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®a2£¼b2B£®2a£¼2bC£®a+2£¼b+2D£®-a£¼-b

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚ¡÷ABCÖУ¬Èý¸öÄÚ½ÇA¡¢B¡¢CËù¶ÔµÄ±ß·Ö±ðÊÇa¡¢b¡¢c£¬ÇÒa¡¢1-b¡¢c³ÉµÈ²îÊýÁУ¬sinA¡¢sinB¡¢sinC³ÉµÈ±ÈÊýÁУ¬ÔòbµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®$£¨-¡Þ£¬\frac{2}{3}£©$B£®$£¨-¡Þ£¬\frac{1}{2}]$C£®$£¨0£¬\frac{2}{3}£©$D£®$£¨0£¬\frac{1}{2}]$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®Éè¿Éµ¼º¯Êýy=f£¨x£©¾­¹ýn£¨n¡ÊN£©´ÎÇ󵼺óËùµÃ½á¹ûΪy=f£¨n£©£¨x£©£®Èç¹ûº¯Êýg£¨x£©=x3¾­¹ý1´ÎÇ󵼺óËùµÃ½á¹ûΪg£¨1£©£¨x£©=3x2£®¾­¹ý2´ÎÇ󵼺óËùµÃ½á¹ûΪg£¨2£©£¨x£©=6x£¬¡­£®
£¨1£©Èôf£¨x£©=ln£¨2x+1£©£¬Çóf£¨2£©£¨x£©£®
£¨2£©ÒÑÖªf£¨x£©=p£¨x£©•q£¨x£©£¬ÆäÖÐp£¨x£©•q£¨x£©ÎªRÉϵĿɵ¼º¯Êý£®ÇóÖ¤£ºf£¨n£©£¨x£©=$\sum_{i=0}^{n}$${C}_{n}^{i}$p£¨n-i£©£¨x£©•q£¨i£©£¨x£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®¡÷ABCÖУ¬sinA£ºsinB£ºsinC=4£º5£º6£¬£®Ôòa£ºb£ºc=4£º5£º6£¬cosA£ºcosB£ºcosC=12£º9£º2£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸