精英家教网 > 高中数学 > 题目详情
7.已知向量$\vec a=(1,2)$,$\vec b=(1,0)$,$\vec c=(3,4)$.若λ为实数,$(\overrightarrow a+λ\overrightarrow b)∥\overrightarrow c$,则λ=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

分析 利用向量共线定理即可得出.

解答 解:$\overrightarrow{a}+λ\overrightarrow{b}$=(1+λ,2),
∵$(\overrightarrow a+λ\overrightarrow b)∥\overrightarrow c$,
∴4(1+λ)-2×3=0,
解得λ=$\frac{1}{2}$.
故选:C.

点评 本题考查了向量共线定理,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.在△ABC中,三个内角A、B、C所对的边分别是a、b、c,且a、1-b、c成等差数列,sinA、sinB、sinC成等比数列,则b的取值范围是(  )
A.$(-∞,\frac{2}{3})$B.$(-∞,\frac{1}{2}]$C.$(0,\frac{2}{3})$D.$(0,\frac{1}{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)已知a>0,b>0,$\frac{1}{b}$-$\frac{1}{a}$>1.求证:$\sqrt{1+a}$>$\frac{1}{\sqrt{1-b}}$.
(2)用数学归纳法证明$\frac{1}{n+1}$+$\frac{1}{n+2}$+$\frac{1}{n+3}$+…+$\frac{1}{n+n}$>$\frac{11}{24}$(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.△ABC中,sinA:sinB:sinC=4:5:6,.则a:b:c=4:5:6,cosA:cosB:cosC=12:9:2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图所示,在排成4×4方阵的16个点中,中心位置4个点在某圆内,其余12个点在圆外.从16个点中任选3点,作为三角形的顶点,其中至少有一个顶点在圆内的三角形共有312个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在3张卡片的正反两面上,分别写着数字1和2,4和5,7和8,将它们并排组成三位数,不同的三位数的个数是48.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.参数方程$\left\{\begin{array}{l}x=3+4cosθ\\ y=-2+4sinθ\end{array}\right.$(θ为参数),化为普通方程为(x-3)2+(y+2)2=16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知两向量$\vec a$与$\vec b$满足$|{\vec a}|=4,|{\vec b}|=2$,且$({\vec a+2\vec b})•({\vec a+\vec b})=12$,则$\vec a$与$\vec b$的夹角为120°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.数列{an}满足a1=2,a2=1,并且$\frac{{a}_{n}}{{a}_{n-1}}$+$\frac{{a}_{n}}{{a}_{n+1}}$=2(n≥2),则数列{an}的第100项为(  )
A.$\frac{1}{{{2^{100}}}}$B.$\frac{1}{{{2^{50}}}}$C.$\frac{1}{100}$D.$\frac{1}{50}$

查看答案和解析>>

同步练习册答案