精英家教网 > 高中数学 > 题目详情
2.如图所示,在排成4×4方阵的16个点中,中心位置4个点在某圆内,其余12个点在圆外.从16个点中任选3点,作为三角形的顶点,其中至少有一个顶点在圆内的三角形共有312个.

分析 根据题意,按圆内取出的点的数目分3种情况讨论:①、取出的3个点都在圆内,②、在圆内取2点,圆外12点中取1点,③、在圆内取1点,圆外12点中取2点,分别求出每一种情况的取法数目,由分类计数原理计算可得答案.

解答 解:根据题意,分3种情况讨论:
①、取出的3个点都在圆内,有C43=4种取法,即有4种取法,
②、在圆内取2点,圆外12点中取1点,有C42C101=60种,即有60种取法,
③、在圆内取1点,圆外12点中取2点,有C41(C122-4)=248种,即有248种取法,
则至少有一个顶点在圆内的三角形有4+60+248=312个,
故答案为:312.

点评 本题考查排列、组合的实际应用,注意要分类讨论,要做到不重不漏.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.观察下列各式:1=12,2+3+4=32,3+4+5+6=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是(  )
A.n+(n+1)+(n+2)+…+(3n-2)=n2B.n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2
C.n+(n+1)+(n+2)+…+(3n-1)=n2D.n+(n+1)+(n+2)+…+(3n-1)=(2n-1)2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数f(x)=4x3+ax2+bx+5在x=-1与x=$\frac{3}{2}$处有极值,则函数的单调递减区间为(-1,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知数列{an}中,a3=2,a7=1,若数列$\left\{{\frac{1}{{1+{a_n}}}}\right\}$是等差数列,则a11等于(  )
A.0B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知实数x,y满足-1≤x+y≤4且2≤x-y≤3,则不等式围成的区域面积为$\frac{5}{2}$,则2x-3y的取值范围是[3,8].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知向量$\vec a=(1,2)$,$\vec b=(1,0)$,$\vec c=(3,4)$.若λ为实数,$(\overrightarrow a+λ\overrightarrow b)∥\overrightarrow c$,则λ=(  )
A.2B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=(x2-a+1)ex,g(x)=(x2-2)ex+2
(1)若函数f(x)在区间[-2,2]上是单调函数,求实数a的取值范围;
(2)若f(x)有两个不同的极值点m,n(m<n),且2(m+n)≤mn-1,记F(x)=e2f(x)+g(x),求F(m)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知x+y+z=1.
证明:(1)x2+y2+z2≥xy+yz+zx,
(2)x2+y2+z2≥$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.2cos275°-1的值为(  )
A.$\frac{{\sqrt{3}}}{2}$B.-$\frac{{\sqrt{3}}}{2}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案