精英家教网 > 高中数学 > 题目详情
过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的一个焦点作垂直于渐近线的直线与双曲线的两支都相交,则双曲线的离心率的取值范围是
 
考点:双曲线的简单性质
专题:圆锥曲线的定义、性质与方程
分析:双曲线的离心率与渐近线的斜率有关,只有b>a时,即该渐近线倾斜角大于45°时,才可能与双曲线另一支相交,由此能求出双曲线离心率的范围.
解答: 解:双曲线的离心率与渐近线的斜率有关,
当b<a时,即该渐近线倾斜角小于45°时,
该渐近线的垂线不可能与双曲线另一支相交,而交点在同一右支上,
当a=b时,该渐近线倾斜角等于45°时,
该渐近线的垂线与另一条渐近线平行,也不可能与双曲线另一支相交,
只有b>a时,即该渐近线倾斜角大于45°时,才可能与双曲线另一支相交,
∴双曲线离心率e=
c
a
=
a2+b2
a

∵b>a,∴e>
2
a
a
=
2

∴e∈(
2
,+∞).
故答案为:(
2
,+∞).
点评:本题考查双曲线的离心率的取值范围的求法,是中档题,解题时要注意双曲线的渐近线的斜率的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=loga(a2x)•loga2(ax),当x∈[2,4]时,y的取值范围是[-
1
8
,0],求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一个数列{an},a1=1,an+1=2an+3n+1,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

设g′(x)是函数g(x)的导函数,且f(x)=g′(x).现给出以下四个命题:
①若f(x)是奇函数,则g(x)必是偶函数;    
②若f(x)是偶函数,则g(x)必是奇函数;
③若f(x)是周期函数,则g(x)必是周期函数;
④若f(x)是单调函数,则g(x)必是单调函数.
其中正确的命题是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

实数x,y满足条件
x+y-4≤0
x-2y+2≥0
x≥0,y≥0
,则x-y的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在[-1,1]上的奇函数,当x1≤x2时,f(x1)≤f(x2).当x∈[0,1]时,2f(
x
5
)=f(x),f(x)=1-f(1-x),则f(-
150
2014
)+f(-
151
2014
)+…+f(-
170
2014
)+f(-
171
2014
)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设M、P是两个非空集合,定义M与P的差集M-P={x|x∈M且x∉P},若A={x|1≤x≤2004,x∈N*},B={y|2≤y≤2005,y∈N*},则B-A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)某个不透明的袋中装有除颜色外其它特征完全相同的7个乒乓球(袋中仅有白色和黄色两种颜色的球),若从袋中随机摸一个乒乓球,得到的球是白色乒乓球的概率是
2
7
,则从袋中一次随机摸两个球,得到一个白色乒乓球和一个黄色乒乓球的概率是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P为抛物线y2=4x上的一个动点,Q为圆C:(x+2)2+(y-3)2=4上一个动点,点P到直线l:x=-1距离为d,则|PQ|+d的最小值为
 

查看答案和解析>>

同步练习册答案