【题目】国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):
分组 |
|
|
|
|
|
频数 | 9 | 23 | 40 | 22 | 6 |
规定:实心球投掷距离在
之内时,测试成绩为“良好”,以各组数据的中间值代表这组数据的平均值
,将频率视为概率.
(1)求
,并估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比.
(2)现在从实心球投掷距离在
,
之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,求:在被抽取的3人中恰有两人的实心球投掷距离在
内的概率.
科目:高中数学 来源: 题型:
【题目】已知数列
的前
项和为
.数列
满足
,
.
(1)若
,且
,求正整数
的值;
(2)若数列
,
均是等差数列,求
的取值范围;
(3)若数列
是等比数列,公比为
,且
,是否存在正整数
,使
,
,
成等差数列,若存在,求出一个
的值,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为庆祝某校一百周年校庆,展示该校一百年来的办学成果及优秀校友风采,学校准备校庆期间搭建一个扇形展览区,如图,是一个半径为2百米,圆心角为
的扇形展示区的平面示意图.点
是半径
上一点,点
是圆弧
上一点,且
.为了实现“以展养展”,现决定:在线段
、线段
及圆弧
三段所示位置设立广告位,经测算广告位出租收入是:线段
处每百米为
元,线段
及圆弧
处每百米均为
元.设
弧度,广告位出租的总收入为
元.
![]()
(1)求
关于
的函数解析式,并指出该函数的定义域;
(2)试问
为何值时,广告位出租的总收入最大,并求出其最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知如图,直线
是抛物线
(
)和圆C:
的公切线,切点(在第一象限)分别为P、Q.F为抛物线的焦点,切线
交抛物线的准线于A,且
.
![]()
(1)求切线
的方程;
(2)求抛物线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左、右焦点分别为
、
,椭圆的离心率为
,过椭圆
的左焦点
,且斜率为
的直线
,与以右焦点
为圆心,半径为
的圆
相切.
(1)求椭圆
的标准方程;
(2)线段
是椭圆
过右焦点
的弦,且
,求
的面积的最大值以及取最大值时实数
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知复数![]()
,其中
为虚数单位,对于任意复数
,有
,
.
(1)求
的值;
(2)若复数
满足
,求
的取值范围;
(3)我们把上述关系式看作复平面上表示复数
的点
和表示复数
的点
之间的一个变换,问是否存在一条直线
,若点
在直线
上,则点
仍然在直线
上?如果存在,求出直线
的方程,否则,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】手机给人们的生活带来便利的同时,也给青少年的成长带来不利的影响,有人沉迷于手机游戏无法自拔,严重影响了自己的学业,某学校随机抽取
个班,调查各班带手机来学校的人数,所得数据的茎叶图如图所示.以组距为
将数据分组成
,
,…,
,
时,所作的频率分布直方图是( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com