精英家教网 > 高中数学 > 题目详情
12.(1)已知tan α=$\frac{1}{2}$,求$\frac{1+2sin(π-α)cos(-2π-α)}{{sin}^{2}(-α)-si{n}^{2}(\frac{5π}{2}-α)}$的值.
(2)已知$\frac{π}{4}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin 2α的值.

分析 (1)利用诱导公式化简,再“弦化切”思想可得答案;
(2)根据$\frac{π}{4}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求出sin(α-β),cos(α+β),那么sin 2α=sin[(α-β)+(α+β)]利用和与差公式求解.

解答 解:(1)$\frac{1+2sin(π-α)cos(-2π-α)}{{sin}^{2}(-α)-si{n}^{2}(\frac{5π}{2}-α)}$
原式=$\frac{1+2sinαcosα}{si{n}^{2}a-co{s}^{2}α}$=$\frac{(sinα+cosα)^{2}}{(sinα+cosα)(sinα-cosα)}$=$\frac{sinα+cosα}{sinα-cosα}$=$\frac{tanα+1}{tanα-1}$
又∵tan α=$\frac{1}{2}$,∴原式=$\frac{\frac{1}{2}+1}{\frac{1}{2}-1}$=-3.
(2)∵$\frac{π}{4}$<β<α<$\frac{3π}{4}$,
∴$\frac{π}{2}$<α+β<$\frac{3π}{2}$,
0<α-β<$\frac{π}{2}$.
又∵cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,
∴sin(α-β)=$\frac{5}{13}$,cos(α+β)=-$\frac{4}{5}$,
∴sin 2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=-$\frac{56}{65}$.

点评 本题考查的知识点是两角和与差的余弦公式,诱导公式,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源:2016-2017学年重庆市高一上学期第一次月考数学试卷(解析版) 题型:解答题

已知二次函数满足:①,②关于的方程

有两个相等的实数根.

(1)求函数的解析式;

(2)求函数上的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.函数g(x)=sin(2x+$\frac{π}{4}$)在[0,$\frac{π}{2}$]上取得最大值时的x的值为(  )
A.$\frac{π}{12}$B.$\frac{π}{8}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=(x2+ax+a)ex(a≤2,x∈R)
(Ⅰ)当a=-1时,求函数f(x)的单调区间;
(Ⅱ)是否存在实数a,使f(x)的极大值为3?若存在,求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算:${8^{\frac{2}{3}}}÷{({\frac{1}{4}})^{-\frac{1}{2}}}$=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设Sn是数列{an}的前n项和,且a1=1,an+1=-SnSn+1,则使$\frac{n{{S}_{n}}^{2}}{1+10{{S}_{n}}^{2}}$取得最大值时n的值为(  )
A.5B.4C.3D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.复数z=$\frac{a+i}{1-i}$(a∈R,i为虚数单位),若z是纯虚数,则复数z的模为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.把标有1、1、2编号的小球,随机放到4个编号为A、B、C、D的盒子中,记ξ为落在A盒中所有小球编号的数字之和(若盒中无球,则数字之和为0),则数学期望E(ξ)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设集合A={1,2,3,4},B={3,4,5},则集合A∩B=(  )
A.{1,2,4}B.{1,2,5}C.{3,4}D.{3,4,5}

查看答案和解析>>

同步练习册答案