精英家教网 > 高中数学 > 题目详情
2.设集合A={1,2,3,4},B={3,4,5},则集合A∩B=(  )
A.{1,2,4}B.{1,2,5}C.{3,4}D.{3,4,5}

分析 运用交集的定义,即为由两集合中相同元素构成的集合,即可得到所求.

解答 解:设集合A={1,2,3,4},B={3,4,5},
则集合A∩B={3,4}.
故选:C.

点评 本题考查集合的交集的求法,注意运用交集的定义,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.(1)已知tan α=$\frac{1}{2}$,求$\frac{1+2sin(π-α)cos(-2π-α)}{{sin}^{2}(-α)-si{n}^{2}(\frac{5π}{2}-α)}$的值.
(2)已知$\frac{π}{4}$<β<α<$\frac{3π}{4}$,cos(α-β)=$\frac{12}{13}$,sin(α+β)=-$\frac{3}{5}$,求sin 2α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知直线l:x-y+2=0与圆C:(x+2)2+(y-1)2=4相交于A,B两点,则$\overrightarrow{AB}•\overrightarrow{AC}$等于7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=2+$\frac{1}{x-a}$的图象经过点(2,3),a为常数.
(1)求a的值和函数f(x)的定义域;
(2)用函数单调性定义证明f(x)在(a,+∞)上是减函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.集合M={x|x=3n,n∈N},集合N={x|x=3n,n∈N},则集合M与集合N的关系(  )
A.M⊆NB.N⊆MC.M∩N=∅D.M?N且N?M

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若命题“?x∈[1,3],x2-2≤a”为真命题,则实数a的最小值为(  )
A.-2B.-1C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=2x的值域是[4,+∞),则实数x的取值范围为[2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数$f(x)=\left\{\begin{array}{l}x+\frac{4}{e},x<0\\ \frac{2x}{e^x},x≥0\end{array}\right.$若f(x1)=f(x2)=f(x3)(x1<x2<x3),则$\frac{{f({x_2})}}{x_1}$的范围是(-1,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.2016年1月1日起全国统一实施全面两孩政策,为了解适龄民众对放开生育二胎政策的态度,某市选取70后,80后作为调查对象,随机调查了100位,得到数据如表:
生二胎不生二胎合计
70后301545
80后451055
合计7525100
(1)根据调查数据,判断是否有90%以上把握认为“生二胎与年龄有关”,并说明理由,参考数据如下:
P(k2≥k0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
(2)以选100人的样本数据估计该市的总体数据,且以频率估计概率,若从该市70后公民中(人数很多)随机抽取3位,求3人中生二胎的人数为1人的概率.

查看答案和解析>>

同步练习册答案