精英家教网 > 高中数学 > 题目详情
16.设f(x),g(x)在(-∞,+∞)内有定义,f(x)为连续函数,且f(x)≠0,g(x)有间断点,下列函数中必有间断点的为(  )
A.g[f(x)]B.[g(x)]2C.f[g(x)]D.$\frac{g(x)}{f(x)}$

分析 举例说明g[f(x)],[g(x)]2,f[g(x)]可能没有间断点,从而确定答案.

解答 解:若f(x)为常数函数,
则g[f(x)]没有间断点,f[g(x)]没有间断点,
若g(x)=$\left\{\begin{array}{l}{-1,x<0}\\{1,x≥0}\end{array}\right.$,故[g(x)]2没有间断点;
故选:D.

点评 本题考查了排除法的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.已知点P(x,y)满足x2+y2≤2,则满足到直线x-y+2$\sqrt{2}$=0的距离d∈[1,3]的点P概率为(  )
A.$\frac{1}{2}$-$\frac{1}{π}$B.$\frac{1}{2}$+$\frac{1}{π}$C.$\frac{1}{4}$-$\frac{1}{2π}$D.$\frac{1}{4}$+$\frac{1}{2π}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=log2(1+x2),
求证:
(1)函数f(x)是偶函数;
(2)函数f(x)在区间(0,+∞)上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知f(x)=${(\frac{1}{2})}^{lo{g}_{2}(x-1)}$.
(1)求f(x)的定义域;
(2)判断f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设F1,F2分别为椭圆E:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦分别为F1,F2,右顶点为A,上顶点为B,P为椭圆上在第一象限内一点,S${\;}_{△P{F}_{1}{F}_{2}}$,S${\;}_{△PA{F}_{2}}$,S${\;}_{△PB{F}_{1}}$分别为△PF1F2,△PAF2,△PBF1的面积,若S${\;}_{△P{F}_{1}{F}_{2}}$=S${\;}_{△PA{F}_{2}}$=S${\;}_{△PB{F}_{1}}$,则直线PF1的斜率为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=$\frac{ln(x+a)}{lnx}$.
(Ⅰ)当a=1时,求f(x)的单调区间,并比较log34,log45与log56的大小;
(Ⅱ)若实数a满足|a|≥1时,讨论f(x)极值点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.偶函数的定义域为R,x∈[0,+∞)时,f(x)=3x+2x2+x.
(1)判断f(x)的单调性(不用证明);
(2)求f(x)在(-∞,0)上的解析式;
(3)解不等式f(a2-3a+7)-f(4a-2a2-5)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙两个码头相距99千米,某货船的船速v(千米/小时)与其载重量p(百吨)的关系式是:v=$\frac{160}{\frac{1}{2}p+3}$,设水流速是4千米/小时,今货船载一定质量的货物早晨8时从甲地运往乙地,然后再载相同质量的一批货物返回甲地,在乙地装卸货物的停留时间需2小时,问这货船最多载重多少吨货物才能在下午3点返回甲地?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知x,y,z∈R+,求证:$\frac{x}{yz}$+$\frac{y}{zx}$+$\frac{z}{xy}$≥$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$.

查看答案和解析>>

同步练习册答案