分析 (1)根据函数成立的条件即可求f(x)的定义域;
(2)利用换元法结合复合函数单调性之间的关系即可判断f(x)的单调性.
解答 解:(1)要使函数有意义,则x-1>0,即x>1,即f(x)的定义域为(1,+∞);
(2)则t=log2(x-1),则y=($\frac{1}{2}$)t为减函数,
当x>1,函数t=log2(x-1)为增函数,则此时f(x)=${(\frac{1}{2})}^{lo{g}_{2}(x-1)}$为减函数,即函数的单调递减区间为(1,+∞).
点评 本题主要考查复合函数单调性的应用,利用复合函数单调性的关系结合对数函数和指数函数的性质是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | (-1,0) | B. | (1,+∞) | C. | (-1,0)∪(1,+∞) | D. | (-1,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | g[f(x)] | B. | [g(x)]2 | C. | f[g(x)] | D. | $\frac{g(x)}{f(x)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1) | B. | (-1,$\frac{1}{2}$] | C. | [$\frac{1}{2}$,1) | D. | (1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com