精英家教网 > 高中数学 > 题目详情

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴正半轴极轴,建立极坐标系,曲线的极坐标方程是

1)写出直线的极坐标方程与曲线的直角坐标方程;

2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点的坐标.

【答案】1;(2到直线距离的最小值为:,此时点的坐标为

【解析】

1)先将直线的参数方程消去参数化为普通方程,再将其转化为极坐标方程,把化为,然后两边同乘以,再利用公式可转化为直角坐标方程.

2)利用点到直线的距离公式,求出到直线的距离的最小值,再根据函数取最值的情况求出点的坐标即可

解:(1)由为参数),消去参数得

所以直线的极坐标方程为,即

,得,得

所以曲线的直角坐标方程为

2)设,则

到直线的距离为

时,,此时

所以当时,点到直线的距离最小,最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于无穷数列的某一项,若存在,有成立,则称具有性质.

1)设,若对任意的都具有性质,求的最小值;

2)设等差数列的首项,公差为,前项和为,若对任意的数列中的项都具有性质,求实数的取值范围;

3)设数列的首项,当时,存在满足,且此数列中恰有一项不具有性质,求此数列的前项和的最大值和最小值以及取得最值时对应的的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)求函数的单调区间;

2)若对任意,任意,不等式恒成立时最大的记为,当时,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc均为正数,设函数fx)=|xb||x+c|+axR

1)若a2b2c2,求不等式fx)<3的解集;

2)若函数fx)的最大值为1,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为常数,函数有两个极值点x1x2,且x1x2,则有(  )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中正确的是(

A.若两个随机变量的线性相关性越强,则相关系数的值越接近于1

B.若正态分布,则

C.把某中学的高三年级560名学生编号:1560,再从编号为11010名学生中随机抽取1名学生,其编号为,然后抽取编号为,…的学生,这样的抽样方法是分层抽样

D.若一组数据034的平均数是2,则该组数据的方差是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有标号分别为1234566张抗疫宣传海报,要求排成23列,则共有_______种不同的排法,如果再要求每列中前面一张的标号比其后面一张的标号小,则共有_______种不同的排法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】疫情过后,某商场开业一周累计生成2万张购物单,从中随机抽出100张,对每单消费金额进行统计得到下表:

消费金额(单位:元)

购物单张数

25

25

30

由于工作人员失误,后两栏数据已无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等(用频率估计概率),完成下列问题:

1)估计该商场开业一周累计生成的购物单中,单笔消费额超过800元的购物单张数;

2)为鼓励顾客消费,拉动内需,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过600元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值元、元、元的奖品.已知中奖率为100%,且一等奖、二等奖、三等奖的中奖率依次构成等差数列,其中一等奖的中奖率为.若今年国庆期间该商场的购物单数量预计比疫情后开业一周的购物单数量增长5%,试预测商场今年国庆期间采办奖品的开销.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,点EAB上,AE2EB2,且DEAB.DE为折痕把△ADE折起,使点A到达点F的位置,且∠FEB60°.

1)求证:平面BFC⊥平面BCDE

2)若直线DF与平面BCDE所成角的正切值为,求二面角EDFC的正弦值.

查看答案和解析>>

同步练习册答案