精英家教网 > 高中数学 > 题目详情

【题目】如图,四边形ABCD为平行四边形,点EAB上,AE2EB2,且DEAB.DE为折痕把△ADE折起,使点A到达点F的位置,且∠FEB60°.

1)求证:平面BFC⊥平面BCDE

2)若直线DF与平面BCDE所成角的正切值为,求二面角EDFC的正弦值.

【答案】1)证明见解析(2

【解析】

1)首先通过证明平面证得.结合余弦定理和勾股定理证得,由此证得平面,进而证得平面平面.

2)建立空间直角坐标系,由直线与平面所成角的正切值求得正弦值,结合直线的方向向量和平面的法向量列方程,解方程求得的长.由此通过平面和平面的法向量,计算出二面角的余弦值,进而求得其正弦值.

1)证明:∵DEAB,∴DEEBDEEF

DE⊥平面BEF,∴DEBF

AE2EB2,∴EF2EB1

∵∠FEB60°,∴由余弦定理得BF

EF2EB2+BF2,∴FBEB

由①②得BF⊥平面BCDE

∴平面BFC⊥平面BCDE.

2)解:以B为原点,BAx轴,在平面ABCD中过点BAB的垂线为y轴,BFz轴,建立空间直角坐标系,

DEa,则D1a0),F00),(﹣1,﹣a),

∵直线DF与平面BCDE所成角的正切值为

∴直线DF与平面BCDE所成角的正弦值为

平面BCDE的法向量001),

|cos|,解得a2

D120),C(﹣220),∴020),(﹣1,﹣2),

设平面EDF的法向量xyz),

,取z1,得),

同理得平面DFC的一个法向量02),

cos

∴二面角EDFC的正弦值为sin.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知直线的参数方程为为参数),以坐标原点为极点,轴正半轴极轴,建立极坐标系,曲线的极坐标方程是

1)写出直线的极坐标方程与曲线的直角坐标方程;

2)若点是曲线上的动点,求到直线距离的最小值,并求出此时点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( .(取

A.16B.17C.24D.25

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学生考试中答对但得不了满分的原因多为答题不规范,具体表现为:解题结果正确,无明显推理错误,但语言不规范、缺少必要文字说明、卷面字迹不清、得分要点缺失等,记此类解答为类解答”.为评估此类解答导致的失分情况,某市教研室做了一项试验:从某次考试的数学试卷中随机抽取若干属于类解答的题目,扫描后由近百名数学老师集体评阅,统计发现,满分12分的题,阅卷老师所评分数及各分数所占比例大约如下表:

教师评分(满分12分)

11

10

9

各分数所占比例

某次数学考试试卷评阅采用双评+仲裁的方式,规则如下:两名老师独立评分,称为一评和二评,当两者所评分数之差的绝对值小于等于1分时,取两者平均分为该题得分;当两者所评分数之差的绝对值大于1分时,再由第三位老师评分,称之为仲裁,取仲裁分数和一、二评中与之接近的分数的平均分为该题得分;当一、二评分数和仲裁分数差值的绝对值相同时,取仲裁分数和前两评中较高的分数的平均分为该题得分.(假设本次考试阅卷老师对满分为12分的题目中的类解答所评分数及比例均如上表所示,比例视为概率,且一、二评与仲裁三位老师评分互不影响).

1)本次数学考试中甲同学某题(满分12分)的解答属于类解答,求甲同学此题得分的分布列及数学期望

2)本次数学考试有6个解答题,每题满分均为12分,同学乙6个题的解答均为类解答,记该同学6个题中得分为的题目个数为,计算事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从甲、乙两种树苗中各抽测了10株树苗的高度,其茎叶图数据如图.根据茎叶图,下列描述正确的是(

A.甲种树苗的中位数大于乙种树苗的中位数,且甲种树苗比乙种树苗长得整齐

B.甲种树苗的中位数大于乙种树苗的中位数,但乙种树苗比甲种树苗长得整齐

C.乙种树苗的中位数大于甲种树苗的中位数,且乙种树苗比甲种树苗长得整齐

D.乙种树苗的中位数大于甲种树苗的中位数,但甲种树苗比乙种树苗长得整齐

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国庆节来临,某公园为了丰富广大人民群众的业余生活,特地以我们都是中国人为主题举行猜谜语竞赛.现有两类谜语:一类叫事物谜,就是我们常说的谜语;另一类叫文义谜,也就是我们常说的灯谜,共8道题,其中事物谜4道题,文义谜4道题,孙同学从中任取3道题解答.

1)求孙同学至少取到2道文义谜题的概率;

2)如果孙同学答对每道事物谜题的概率都是,答对每道文义谜题的概率都是,且各题答对与否相互独立,已知孙同学恰好选中2道事物谜题,1道文义谜题,用表示孙同学答对题的个数,求随机变量的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着经济的发展和人民生活水平的提高,以及城市垃圾分类收集的实施和推广,我国居民生活垃圾的平均热值逐年.上升,垃圾焚烧发电的吨上网电量(单位:千瓦时/吨)显著增加.下表为某垃圾焚烧发电厂最近五个月的生产数据.

月份代码

吨上网电量

若从该发电厂这五个月的生产数据(吨上网电量)中任选两个,求其中至少有一个生产数据超过的概率;

通过散点图(如图)可以发现,变量之间的关系可以用函数(其中为自然对数的底数)来拟合,求常数的值.

参考公式:对于一组数据,其回归直线的斜率和截距的最小二乘估计公式分别为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的零点构成一个公差为的等差数列,把函数的图象沿轴向右平移个单位,得到函数的图象.关于函数,下列说法正确的是( )

A. 上是增函数B. 其图象关于直线对称

C. 函数是偶函数D. 在区间上的值域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,原点为,椭圆的动弦过焦点且不垂直于坐标轴,弦的中点为,过且垂直于线段的直线交射线于点

(1)证明:点在定直线上;

(2)当最大时,求的面积.

查看答案和解析>>

同步练习册答案