精英家教网 > 高中数学 > 题目详情
5.用数字2,5组成四位数,且数字2,5至少都出现一次,这样的四位数有14个.(用数字作答)

分析 首先确定数字中2和5的个数,当数字中有1个2,3个5时,当数字中有2个2,2个5时,当数字中有3个2,1个5时,写出每种情况的结果数,最后相加即可.

解答 解:首先确定数字中2和5的个数,
当数字中有1个2,3个5时,共有C41=4种结果,
当数字中有2个2,2个5时,共有C42=6种结果,
当数字中有3个2,1个5时,共有有C41=4种结果,
根据分类加法原理知共有4+6+4=14种结果,
故答案为:14.

点评 本题考查分类计数原理,这种问题一般容易出错,注意分类时要做到不重不漏,本题是一个中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.根据二分法原理求方程x2-2=0的近似根的框图可称为(  )
A.工序流程图B.知识结构图C.程序框图D.组织结构图

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.函数f1(x)=x,f2(x)=x-$\frac{{x}^{3}}{6}$,f3(x)=x-$\frac{{x}^{3}}{6}$+$\frac{{x}^{5}}{120}$,f4(x)=x-$\frac{{x}^{3}}{6}$+$\frac{{x}^{5}}{120}$-$\frac{{x}^{7}}{5040}$,f5(x)=x-$\frac{{x}^{3}}{6}$+$\frac{{x}^{5}}{120}$-$\frac{{x}^{7}}{5040}$+$\frac{{x}^{9}}{362880}$,依次称为f(x)=sinx在[0,π]上的第1项、2项、3项、4项、5项多项式逼近函数.以此类推,请将f(x)=sinx的n项多项式逼近函数fn(x)在横线上补充完整:fn(x)=$x-\frac{x^3}{3!}+\frac{x^5}{5!}-…+{(-1)^{n-1}}\frac{{{x^{2n-1}}}}{(2n-1)!}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.如图所示,一个左右对称的三角形数阵,其第n行共有n个数,每一行的第一个数依次组成等差数列,从第三行起每一行中除了第一个数和最后一个数外,每一个数都等于它肩上的两个数字之和,记第i行的第j个数为f(i,j),则当n≥3时,f(n,2)=$\frac{n(n-1)}{2}+1$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.观察以下式子:
$\begin{array}{l}cos\frac{2π}{3}=-\frac{1}{2};\\ cos\frac{2π}{5}+cos\frac{4π}{5}=-\frac{1}{2};\\ cos\frac{2π}{7}+cos\frac{4π}{7}+cos\frac{6π}{7}=-\frac{1}{2};\end{array}$
按此规律归纳猜想第5个的等式为$cos\frac{2π}{11}+cos\frac{4π}{11}+cos\frac{6π}{11}+cos\frac{8π}{11}+cos\frac{10π}{11}=-\frac{1}{2}$.(不需要证明)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知命题p:函数f(x)=loga|x|在(0,+∞)上单调递增;命题q:关于x的方程x2+2x+$lo{g}_{a}\frac{1}{2}$=0的解集只有一个子集.若p∨q为真,p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(1)已知定义在R上的函数f(x)=|x+1|+|x-2|的最小值为a.求a的值;
(2)对于实数x,y,若|x-1|≤1,|y-2|≤1,求|x-y+1|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=2x,若x1,x2是R上的任意两个数,且x1≠x2,则$\frac{{{2^{x_1}}+{2^{x_2}}}}{2}>{2^{\frac{{{x_1}+{x_2}}}{2}}}$,请对比函数f(x)=2x得到函数g(x)=lgx一个类似的结论:x1,x2是R上的任意两个数,且x1≠x2,则$\frac{{2}^{{x}_{1}}+{2}^{{x}_{2}}}{2}<{2}^{\frac{{x}_{1}+{x}_{2}}{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设m、n是不同的直线,α、β是不同的平面,有以下四个命题:
①若m⊥n,m⊥α,则n∥α     
②若n⊥β,m∥α,α⊥β,则m∥n
③若m⊥α,m∥β,则α⊥β   
④若m∥n,n?α,则m∥α
其中真命题的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案