20£®ÒÑÖªÒ»Ìõ·â±ÕµÄÇúÏßCÓÉÒ»¶ÎÔ²»¡C1£º$\left\{\begin{array}{l}{x=2cost}\\{y=2sint}\end{array}\right.$t¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]ºÍÒ»¶ÎÅ×ÎïÏß»¡C2£ºy2=2£¨x+$\frac{1}{2}$£©£¨x£¼1£©×é³É£®
£¨1£©ÇóÇúÏßCµÄ¼«×ø±ê·½³Ì£»£¨XÖáµÄÕý°ëÖáΪ¼«ÖᣬԭµãΪ¼«µã£©
£¨2£©Èô¹ýÔ­µãµÄÖ±Ïß1ÓëÇúÏßC½»ÓÚA¡¢BÁ½µã£¬lµÄÇãб½Ç¦Á¡Ê[0£¬$\frac{¦Ð}{3}$]£¬Çó|AB|µÄȡֵ·¶Î§£®

·ÖÎö £¨1£©Ê×ÏÈ£¬½«Ëù¸ø²ÎÊý·½³Ì»¯ÎªÆÕͨ·½³Ì£¬È»ºó£¬»¯Îª¼«×ø±ê·½³Ì£¬¶ÔÅ×ÎïÏß·½³ÌÖ±½Ó»¯Îª¼«×ø±ê·½³Ì¼´¿É£»
£¨2£©¶Ô¦ÈµÄȡֵÇé¿ö½øÐÐÌÖÂÛ£¬´Ó¶øÈ·¶¨|AB|µÄȡֵ·¶Î§£®

½â´ð ½â£º£¨1£©ÇúÏßC1£º$\left\{\begin{array}{l}{x=2cost}\\{y=2sint}\end{array}\right.$£¬µÃ
x2+y2=4£¬
¡ßt¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]£¬
¡àx¡Ê[-1£¬1]£¬y¡Ê[-$\sqrt{3}$£¬$\sqrt{3}$]£¬
´Ëʱ¶ÔÓ¦µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬¦È¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]£¬
¡ßÅ×ÎïÏß»¡C2£ºy2=2£¨x+$\frac{1}{2}$£©£¨x£¼1£©×é³É£®
´Ëʱ¶ÔÓ¦µÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{1}{1-cos¦È}$£¬¦È¡Ê£¨$\frac{¦Ð}{3}$£¬$\frac{5¦Ð}{3}$£©£¬
¡à¦Ñ=$\left\{\begin{array}{l}{2£¬¦È¡Ê[-\frac{¦Ð}{3}£¬\frac{¦Ð}{3}]}\\{\frac{1}{1-cos¦È}£¬¦È¡Ê£¨\frac{¦Ð}{3}£¬\frac{5¦Ð}{3}£©}\end{array}\right.$£»
£¨2£©½áºÏ£¨1£©Öª£¬|AB|=¦Ñ¦È+¦Ñ¦Â+¦Ð£¬¸ù¾ÝͼÐΣ¬µÃ
µ±¦È¡Ê[-$\frac{¦Ð}{3}$£¬$\frac{¦Ð}{3}$]ʱ£¬¦È+¦Ð¡Ê[$\frac{2¦Ð}{3}$£¬$\frac{4¦Ð}{3}$]£¬´Ëʱ£¬
|AB|=¦Ñ¦È+¦Ñ¦Â+¦Ð
=2+$\frac{1}{1-cos£¨¦È+¦Ð£©}$
=2+$\frac{1}{1+cos¦È}$£¬
¡à|AB|¡Ê[$\frac{5}{2}$£¬$\frac{8}{3}$]£¬
µ±¦È¡Ê£¨$\frac{¦Ð}{3}$£¬$\frac{2¦Ð}{3}$£©Ê±£¬¦È+¦Ð¡Ê£¨$\frac{4¦Ð}{3}$£¬$\frac{5¦Ð}{3}$£©£¬´Ëʱ£¬
|AB|=¦Ñ¦È+¦Ñ¦Â+¦Ð
=$\frac{1}{1-cos¦È}$+$\frac{1}{1-cos£¨¦È+¦Ð£©}$
=$\frac{1}{1-cos¦È}$+$\frac{1}{1+cos¦È}$£¬
=$\frac{2}{1-co{s}^{2}¦È}$£¬
¡ß¦È¡Ê[$\frac{2¦Ð}{3}$£¬$\frac{5¦Ð}{3}$£©Ê±£¬ÓÉͼÐζԳÆÐÔ£¬Öª
·¶Î§ÓëÉÏÊöÒ»Ö£¬×ÛÉÏ£¬µÃ
|AB|¡Ê[2£¬$\frac{8}{3}$]£®

µãÆÀ ±¾ÌâÖØµã¿¼²éÁ˲ÎÊý·½³ÌºÍÆÕͨ·½³ÌµÄ»¥»¯¡¢¼«×ø±ê·½³ÌµÈ֪ʶ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªº¯Êýf£¨x£©=log${\;}_{\frac{1}{2}}$$\frac{x-2}{x+2}$£»
£¨¢ñ£©Çóº¯Êýf£¨x£©µÄ¶¨ÒåÓò£¬ÔÙÅÐ¶ÏÆæÅ¼ÐÔ²¢ËµÃ÷ÀíÓÉ£»
£¨¢ò£©ÊÔ̽¾¿º¯Êýf£¨x£©ÔÚÇø¼ä£¨2£¬+¡Þ£©Éϵĵ¥µ÷ÐÔ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®É輯ºÏA={x|$\frac{6}{x+1}$£¾1£¬x¡ÊR}£¬B={x|x2+mx+m2-7£¼0£¬x¡ÊR£¬m¡ÊR}£¬C={y|y=$\frac{{x}^{2}}{{x}^{2}+1}$£¬x¡ÊR}
£¨¢ñ£©Èô¼¯ºÏA¡ÉB=£¨-1£¬2£©£¬ÇómµÄÖµ£»
£¨¢ò£©ÈôC¡ÈB=B£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®º¯Êýº¯Êýy=${3}^{{x}^{2}-2x}$µÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬1£©B£®£¨-¡Þ£¬-1£©C£®£¨1£¬+¡Þ£©D£®£¨3£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®OÎª×ø±êÔ­µã£¬Ö±Ïßl£º$\sqrt{3}x$-y-$\sqrt{3}$=0ÓëÅ×ÎïÏßy2=4x½»ÓÚA£¬BÁ½µã£¬µãAÔÚµÚÒ»ÏóÏÞ£¬FΪÅ×ÎïÏߵĽ¹µã£¬Ôò¡÷AOFÓë¡÷BOFµÄÃæ»ýÖ®±ÈΪ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®$\frac{1}{3}$C£®2D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èôf£¨x£©=1gx£¬g£¨x£©=f£¨|x|£©£¬Ôòµ±g£¨1gx£©£¾g£¨1£©Ê±£¬xµÄȡֵ·¶Î§ÊÇ£¨0£¬$\frac{1}{10}$£©¡È£¨10£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚËıßÐÎABCDÖУ¬ÒÑÖª¶¥µãA£¨3£¬-2£©£¬B£¨-1£¬4£©£¬C£¨-2£¬-2£©£¬D£¨0£¬-5£©£¬ÇóÖ¤£ºËıßÐÎABCDÊÇÌÝÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªÊýÁÐ{an}£¬ÆäÖÐcn=2n+3n£¬ÊÔ̽ÇóÊýÁÐ{cn+1-pcn}³ÉµÈ±ÈÊýÁеijäÒªÌõ¼þ£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èôloga$\root{5}{b}$=c£¬ÔòÏÂÁйØÏµÊ½ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®b=a5cB£®b5=acC£®b=5acD£®b=c5a

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸