分析 如果数列{cn+1-pcn}为等比数列,则必有c2-pc1,c3-pc2,c4-pc3成等比数列.由此,可以求出p的值,然后证明所求p值符合题意.
解答 解:因为{cn+1-pcn}是等比数列,
故有c2-pc1,c3-pc2,c4-pc3成等比数列,
所以(c3-pc2)2=(c2-pc1)(c4-pc3),
即(35-13p)2=(13-5p)(97-35p).
解得p=2或p=3.
证明如下:
当p=2时,cn+1-pcn=(2n+1+3n+1)-2(2n+3n)=3n,数列{cn+1-pcn}成等比数列;
当p=3时,cn+1-pcn=(2n+1+3n+1)-3(2n+3n)=-2n,数列{cn+1-pcn}成等比数列.
∴数列{cn+1-pcn}成等比数列的充要条件为p=2或p=3.
点评 本题考查数列{cn+1-pcn}成等比数列的充要条件的探求和证明,是中档题,解题时要认真审题,注意等比数列的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=$\frac{2}{{x}^{2}-1}$ | B. | f(x)=$\frac{1}{{x}^{2}-1}$ | C. | f(x)=$\frac{2x}{{x}^{2}-1}$ | D. | f(x)=$\frac{x}{{x}^{2}-1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com