精英家教网 > 高中数学 > 题目详情
12.在四边形ABCD中,已知顶点A(3,-2),B(-1,4),C(-2,-2),D(0,-5),求证:四边形ABCD是梯形.

分析 由已知可得:$\overrightarrow{AB}=2\overrightarrow{DC}$,即可证明四边形ABCD是梯形.

解答 证明:∵$\overrightarrow{AB}$=(-1,4)-(3,-2)=(-4,6),
$\overrightarrow{DC}$=(-2,-2)-(0,-5)=(-2,3),
∴$\overrightarrow{AB}=2\overrightarrow{DC}$,
∴四边形ABCD是梯形.

点评 本题考查了向量坐标运算、向量共线与梯形的关系,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.等差数列{an}的前三项依次为a-1,a+1,2a+3,则此数列的第n项an=(  )
A.2n-5B.2n-3C.2n-1D.2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,以Ox为始边作角α与β(0<β<α<π),它们的终边分别与单位圆相交于P,Q两点,已知点P的坐标为$({-\frac{3}{5},\frac{4}{5}})$
(1)求$\frac{sin2α+cos2α+1}{1+tanα}$的值;
(2)若$\overrightarrow{OP}•\overrightarrow{OQ}$=0,求cos(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知一条封闭的曲线C由一段圆弧C1:$\left\{\begin{array}{l}{x=2cost}\\{y=2sint}\end{array}\right.$t∈[-$\frac{π}{3}$,$\frac{π}{3}$]和一段抛物线弧C2:y2=2(x+$\frac{1}{2}$)(x<1)组成.
(1)求曲线C的极坐标方程;(X轴的正半轴为极轴,原点为极点)
(2)若过原点的直线1与曲线C交于A、B两点,l的倾斜角α∈[0,$\frac{π}{3}$],求|AB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知集合A={x|3<x<5},B={x|2+a<x<1-a,a∈R}.
(1)若a=-3,求A∩B;
(2)若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知a,b是方程x2-6x+4=0的两个正根,求$\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a}+\sqrt{b}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若a=log${\;}_{\sqrt{2}}$$\frac{1}{\sqrt{3}}$,b=log${\;}_{\sqrt{3}}$$\frac{1}{\sqrt{2}}$,c=-2,则a,b,c的大小关系是c<a<b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.函数f(x)=ax+$\sqrt{{a}^{x}+2}$的值域为($\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.先将下列式子改写指数式,再求各式中x的值.
①log2x=-$\frac{2}{5}$
②logx3=-$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案