精英家教网 > 高中数学 > 题目详情
函数g(x)=x2+x,x∈{1,2}的值域为(    ).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ax4+bx2+cx+1(a,b,c∈R),在x=-1处取得极值-
14
,在x=-2处的切线与直线x-8y=0垂直.
(1)求常数a,b,c的值;
(2)对于函数h(x)和g(x),若存在常数k,m,对于任意x∈R,不等式h(x)≥kx+m≥g(x)都成立,则称直线y=kx+m是函数h(x),g(x)的分界线,求函数f(x)与函数g(x)=-x2+2x+1的“分界线”方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义f[a,b]=
12
(|a-b|+a+b)
.若函数g(x)=x2-1,h(x)=x-1,则函数f[g(x),h(x)]的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在R上的偶函数,且x≥0时,f(x)=(
1
2
x,函数f(x)的值域为集合A.
(Ⅰ)求f(-1)的值;
(Ⅱ)设函数g(x)=
-x2+(a-1)x+a
的定义域为集合B,若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=|x-1|+|x-2|+|x-3|+|x-4|与函数g(x)=x2+2ax+5有相同的最小值,则a的值等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•兰州模拟)已知函数f(x)=x3+ax2+bx+1的导数f'(x)满足f'(1)=2a-6,f′(2)=-b-18,其中常数a,b∈R.
(1)判断函数f(x)的单调性并指出相应的单调区间;
(2)若方程f(x)=k有三个不相等的实根,且函数g(x)=x2-2kx+1在[-1,2]上的最小值为-23,求实数k的值.

查看答案和解析>>

同步练习册答案