精英家教网 > 高中数学 > 题目详情
已知扇形的面积等于
π
6
cm2,弧长为 
π
3
cm,则圆心角等于(  )
A、
π
6
B、
π
4
C、
π
3
D、
π
2
考点:扇形面积公式,弧长公式
专题:计算题
分析:设出扇形的半径,通过弧长,面积求出半径和弧长,然后求出圆心角即可.
解答: 解:设扇形的半径为r,
由扇形面积公式可得:
1
2
×
π
3
×r=
π
6

解得r=1.
当r=1时,扇形圆心角α等于:
π
3
1
=
π
3

故选:C.
点评:本题考查扇形的面积公式的应用,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某农户计划种植黄瓜和韭菜,种植面积不超过50亩,投入资金不超过54万元,假设种植黄瓜和韭菜的产量、成本和售价如下表
年产量/亩 年种植成本/亩 每吨售价
黄瓜 4吨 1.2万元 0.55万元
韭菜 6吨 0.9万元 0.3万元
为使一年的种植总利润(总利润=总销售收入-总种植成本)最大,那么黄瓜和韭菜的种植面积(单位:亩)应该分别是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

在不考虑空气阻力的情况下,火箭的最大速度v(单位:m/s)和燃料的质量M(单位:kg),火箭(除燃料外)的质量m(单位:kg)满足ev=(1+
M
m
2000.(e为自然对数的底)
(Ⅰ)当燃料质量M为火箭(除燃料外)质量m两倍时,求火箭的最大速度(单位:m/s);
(Ⅱ)当燃料质量M为火箭(除燃料外)质量m多少倍时,火箭的最大速度可以达到8km/s.(结果精确到个位,数据:e≈2.718,e4≈54.598,ln3≈1.099))

查看答案和解析>>

科目:高中数学 来源: 题型:

经过原点O 作圆(x-6)2+y2=4的切线,切线长是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

学校为了预防甲流感,每天上午都要对同学进行体温抽查.某一天,随机抽取甲、乙两个班级各10名同学,测量他们的体温如图:(单位0.1℃)
(1)哪个班所选取的这10名同学的平均体温高?
(2)一般37.3~37.9℃为低热,38.0~39.0℃为中等热,39.1~41.0℃为高热.按此规定,记事件A为“从甲班发热的同学中任选两人,有中等热的同学”,记事件B为“从乙班发热的同学中任选两人,有中等热的同学”,分别求事件A和事件B的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图中的三角形称为希尔宾斯基三角形,我们将第n个三角形中着色的三角形个数记为an;把前n个三角形中,着色的三角形个数记为Sn,则Sn=
 
;(答案用n表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

某商场在七月初七举行抽奖促销活动,要求一男一女参加抽奖,抽奖规则是:从装有3个白球和2个红球的箱子中每次随机地摸出一个球,记下颜色后放回.若1人摸出一个红球得奖金10元,1人摸出2个红球得奖金50元.规定:一对男女中男的摸一次,女的摸二次.令ξ表示两人所得奖金总额.
(1)求ξ的分布列;
(2)求ξ的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合M=[0,1),N=[1,2),函数f(x)=
2x       (x∈M)
4-2x  (x∈N)

(1)若x∈M,g(x)=f2(x)-2f(x)+a,且g(x)的最小值为1,求实数a的值;
(2)若x0∈M,且f(f(x0))∈M,求x0的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)=
4x
4x+2
,求f(
1
1001
)+f(
2
1001
)+f(
3
1001
)+…+f(
1000
1001
)
的值.

查看答案和解析>>

同步练习册答案