精英家教网 > 高中数学 > 题目详情
4.已知集合M={x∈N|x2-2x-3<0},P={-1,0,1,2,3},则M∩P=(  )
A.{1,2}B.{0,1,2}C.{0,1,2,3}D.(-1,0,1,2,3}

分析 根据集合的基本运算进行求解即可.

解答 解:M={x∈N|x2-2x-3<0}={x∈N|-1<x<3}={0,1,2},P={-1,0,1,2,3},
则M∩P={0,1,2},
故选:B

点评 本题主要考查集合的基本运算,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.等差数列10,8,6,4,…的第20项是-28.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.设抛物线y=$\frac{1}{4}$x2上的一点P到x轴的距离是4,则点P到该抛物线焦点的距离为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知sinθ-cosθ=$\frac{1}{2}$,θ∈(0,π),则tanθ=$\frac{4+\sqrt{7}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=2acos2x+bsinxcosx,且f(0)=2,f($\frac{π}{3}$)=$\frac{1}{2}$+$\frac{{\sqrt{3}}}{2}$
(1)求a,b的值;
(2)求f(x)的最大值与最小值;
(3)若α-β≠kπ,k∈z,且f(α)=f(β),求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0的左、右顶点恰好与双曲线C′:x2-y2=2的左、右焦点重合,且椭圆C与双曲线C′的离心率互为倒数.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(1,0)的直线l与椭圆C相交于A,B两点.点P(4,3),记直线PA,PB的斜率分别为k1,k2,当k1•k2最大时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知全集U=R,A={y|y=2x+1},B={x||x-1|+|x-2|<2},则(∁UA)∩B={x|$\frac{1}{2}$<x≤1}..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在距A城市45千米的B地发现金属矿,过A有一直线铁路AD.欲运物资于A,B之间,拟在铁路线AD间的某一点C处筑一公路到B. 现测得BD=27$\sqrt{2}$千米,∠BDA=45°(如图).已知公路运费是铁路运费的2倍,设铁路运费为每千米1个单位,总运费为y.为了求总运费y的最小值,现提供两种方案:方案一:设AC=x千米;方案二设∠BCD=θ.
(1)试将y分别表示为x、θ的函数关系式y=f(x)、y=g(θ);
(2)请选择一种方案,求出总运费y的最小值,并指出C点的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow a$,$\overrightarrow b$满足|$\overrightarrow a$|=3,|$\overrightarrow b$|=2$\sqrt{3}$,且$\overrightarrow a$⊥($\overrightarrow a$+$\overrightarrow b$),则$\overrightarrow b$在$\overrightarrow a$方向上的投影为-3.

查看答案和解析>>

同步练习册答案