精英家教网 > 高中数学 > 题目详情
68、若函数f(x)=x3-3x+a有3个不同的零点,则实数a的取值范围是
-2<a<2
分析:先构造两个简单函数转化为二者交点的问题,从而可得答案.
解答:解:设g(x)=x3,h(x)=3x-a
∵f(x)=x3-3x+a有三个不同零点,即g(x)与h(x)有三个交点
∵g'(x)=3x2,h'(x)=3
当g(x)与h(x)相切时
g'(x)=h'(x),3x2=3,得x=1,或x=-1
当x=1时,g(x)=1,h(x)=3-a=1,得a=2
当x=-1时,g(x)=-1,h(x)=-3-a=-1,得a=-2
要使得g(x)与h(x)有三个交点,则-2<a<2
故答案为:-2<a<2
点评:本题主要考查函数零点的判定方法--转化为两个简单函数的交点问题.属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若函数f(x)=x3+
1
x
,则
 
lim
△x→0
f(△x-1)+f(1)
2△x
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3x-1,x∈[-1,l],则下列判断正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3+3mx2+nx+m2为奇函数,则实数m的值为
0
0

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3bx+b在区间(0,1)内有极小值,则b的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=x3-3x+1在闭区间[-3,0]上的最大值,最小值分别为M,m,则M+m=
-14
-14

查看答案和解析>>

同步练习册答案