精英家教网 > 高中数学 > 题目详情
16.横梁的强度和它的矩形横断面的宽成正比,并和矩形横断面的高的平方成正比,要将直径为d的圆木锯成强度最大的横梁,则横断面的高和宽分别为(  )
A.$\sqrt{3}$d,$\frac{{\sqrt{3}}}{3}$dB.$\frac{{\sqrt{3}}}{3}$d,$\frac{{\sqrt{6}}}{3}$dC.$\frac{{\sqrt{6}}}{3}$d,$\frac{{\sqrt{3}}}{3}$dD.$\frac{{\sqrt{6}}}{3}$d,$\sqrt{3}$d

分析 据题意横梁的强度同它的断面高的平方与宽x的积成正比(强度系数为k,k>0)建立起强度函数,求出函数的定义域,再利用求导的方法求出函数取到最大值时的横断面的值.

解答 解:如图所示,设矩形横断面的宽为x,高为y.由题意知,当xy2取最大值时,横梁的强度最大.
∵y2=d2-x2
∴xy2=x(d2-x2)(0<x<d).
令f(x)=x(d2-x2)(0<x<d),
得f′(x)=d2-3x2,令f′(x)=0,
解得x=$\frac{\sqrt{3}}{3}$d或x=-$\frac{\sqrt{3}}{3}$d(舍去).
当0<x<$\frac{\sqrt{3}}{3}$d,f′(x)>0;当$\frac{\sqrt{3}}{3}$d<x<d时,f′(x)<0,
因此,当x=$\frac{\sqrt{3}}{3}$d时,f(x)取得极大值,也是最大值.
∴y=$\frac{\sqrt{6}}{3}$d
故选:C.

点评 考查据实际意义建立相关的函数,再根据函数的特征选择求导的方法来求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.某几何体的三视图如图所示,则该几何体的表面积为(  )
A.$12+4\sqrt{2}$B.$16+4\sqrt{2}$C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知某几何体由相同的n个小正方体构成,其三视图如图所示,则n=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|1<x-1≤4},B={x|x<a}.
(Ⅰ)当a=3时,求A∩B;
(Ⅱ)若A⊆B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示在圆锥PO中,已知PO=$\sqrt{2}$,⊙O的直径AB=2,C是$\widehat{AB}$上的点(点C不与AB重合),D为AC中点.
(Ⅰ)证明:平面POD⊥平面PAC;
(Ⅱ)求圆锥PO的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)满足:对任意α,β∈R,都有f(α•β)=α•f(β)+β•f(α),且f(2)=2,数列{an}满足an=f(2n)(n∈N+).
(1)求数列{an}的通项公式;
(2)令bn=$\frac{{a}_{n}}{n}$($\frac{{a}_{n}}{n}$-1),cn=$\frac{{b}_{n}}{{b}_{n+1}}$,记Tn=$\frac{1}{n}$(c1+c2+…+cn)(n∈N+).问:是否存在正整数M,使得当n∈N+时,不等式Tn<$\frac{M}{584}$恒成立?若存在,求出M的最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知a,b是任意实数,且a<b,则(  )
A.a2<b2B.$\frac{b}{a}>1$C.lg(b-a)>0D.($\frac{1}{3}$)a>($\frac{1}{3}$)b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某中学号召学生在今年暑假期间至少参加一次社会公益活动(以下简称活动).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.
(Ⅰ)求合唱团学生参加活动的人均次数;
(Ⅱ)从合唱团中任意选两名学生,求他们参加活动次数恰好相等的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.圆心为(1,2)且过原点的圆的方程是(  )
A.(x-1)2+(y-2)2=5B.(x+1)2+(y+2)2=5C.(x-1)2+(y-2)2=3D.(x+1)2+(y+2)2=3

查看答案和解析>>

同步练习册答案