精英家教网 > 高中数学 > 题目详情
7.若关于x的不等式ax2+7x+4>0的解集是{x|-$\frac{1}{2}$<x<4},则关于x的不等式ma•x2+(m+a)x+3+a>0(m≥0)的解集为{x|x<$\frac{1}{2}$}或{x|-$\frac{1}{m}$<x<$\frac{1}{2}$}.

分析 (1)关于x的不等式ax2+7x+4>0的解集是{x|-$\frac{1}{2}$<x<4},可知:-$\frac{1}{2}$,4是一元二次方程ax2+7x+4=0的两个实数根,利用根与系数的关系即可得出a.再对a分类讨论利用一元二次不等式的解法即可得出.

解答 解:(1)∵关于x的不等式ax2+7x+4>0的解集是{x|-$\frac{1}{2}$<x<4},
∴-$\frac{1}{2}$,4是一元二次方程ax2+7x+4=0的两个实数根,
∴-$\frac{1}{2}$×4=$\frac{4}{a}$,解得a=-2.
不等式 ma•x2+(m+a)x+3+a>0(m≥0)即为-2mx2+(m-2)x+1>0,化为2mx2+(2-m)x-1<0.
当m=0时,不等式化为2x-1<0,解得x<$\frac{1}{2}$;
当m>0时,不等式化为(mx+1)(2x-1)<0,解得-$\frac{1}{m}$<x<$\frac{1}{2}$.
∴当m=0时,不等式的解集为{x|x<$\frac{1}{2}$};
当m>0时,不等式的解集为{x|-$\frac{1}{m}$<x<$\frac{1}{2}$},
故答案为:{x|x<$\frac{1}{2}$}或{x|-$\frac{1}{m}$<x<$\frac{1}{2}$}.

点评 本题考查了一元二次不等式的解法、分类讨论的思想方法、一元二次方程的根与系数的关系等基础知识与基本技能方法,考查了推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知z为纯虚数,$\frac{z+2}{1-i}$是实数,则复数z=(  )
A.2iB.iC.-2iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知A(2,3),$\overrightarrow{OB}$=(6,-3),点P在线段BA延长线上,且|$\overrightarrow{AP}$|=$\frac{2}{3}$|$\overrightarrow{PB}$|,则点P的坐标是(-6,15).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若关于x的不等式(a2-a)•4x-2x-1<0在区间(-∞,1]上恒成立,则实数a的取值范围为(  )
A.(-2,$\frac{1}{4}$)B.(-∞,$\frac{1}{4}$)C.(-$\frac{1}{2}$,$\frac{3}{2}$)D.(-∞,6]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知直线l过点(1,0),倾斜角是直线2x-y-2=0的倾斜角的2倍,则直线l的方程为(  )
A.4x-y-4=0B.4x+y-4=0C.3x+4y-3=0D.4x+3y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.对于函数f(x),若f(x)=x,则称x为f(x)的“不动点”,若f(f(x))=x,则称x为f(x)的“稳定点”.函数f(x)的“不动点”和“稳定点”的集合分别记为A和B,即A={x|f(x)=x},B={x|f(f(x))=x}
(1)证明:A⊆B;
(2)设f(x)=x2+ax+b,若A={-1,3},求集合B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数f(x)是(0,+∞)上单调递增函数,当n∈N*时,f(n)∈N*,且f[f(n)]=3n,则f(3n)的值等于2•3n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.复数z=(cosθ-1)+(sinθ+2)i(其中θ为参数)在复平面内对应的点的轨迹方程是(  )
A.(x-1)2+(y+2)2=1B.(x+1)2+(y+2)2=1C.(x+1)2+(y-2)2=1D.(x-1)2+(y-2)2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.直线:xsin30°+ycos150°+2=0的斜率是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$-\sqrt{3}$

查看答案和解析>>

同步练习册答案