精英家教网 > 高中数学 > 题目详情
圆锥的高是10cm,侧面展开图是半圆,此圆锥的侧面积是
 
考点:旋转体(圆柱、圆锥、圆台)
专题:计算题,空间位置关系与距离
分析:首先根据母线、高及半径组成直角三角形求得圆锥的底面半径及圆锥的母线长,然后利用圆锥的侧面积公式求得侧面积.
解答: 解:设圆锥的母线长为l,
∵侧面展开图是一半圆,
∴πl=2πr,
∴r=
l
2

∵圆锥高是10cm,
∴(10)2+r2=l2
解得:r=
10
3
3
cm,
∴母线l=
20
3
3
cm,
∴圆锥的侧面积为:2π×
10
3
3
×
20
3
3
÷2=
200
3
πcm2
故答案为:
200
3
πcm2
点评:本题考查圆锥的计算,解题的关键是弄清圆锥的侧面积的计算方法,特别是圆锥的底面周长等于圆锥的侧面扇形的弧长.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设f(x)=ex-ax-a.
(Ⅰ)若f(x)≥0对一切x≥-1恒成立,求a的取值范围;
(Ⅱ)设g(x)=f(x)+
a
ex
,且A(x1,y1),B(x2,y2)(x1≠x2)是曲线y=g(x)上任意两点,若对任意的a≤-1,直线AB的斜率恒大于常数m,求m的取值范围;
(Ⅲ)求证:1n+3n+…+(2n-1)n
e
e-1
(2n)n(n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax3+cx+d(a≠0)是R上的奇函数,当x=1时f(x)取得极值-2.
(1)求函数f(x)的解析式;
(2)求函数f(x)的单调区间和极大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱柱ABC-A1B1C1中,侧棱BB1⊥底面ABC,∠BAC=90°,AB=AC=AA1=2,且E是BC中点.
(I)求锥体A1-B1C1EB的体积;
(Ⅱ)求证:B1C⊥AC1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三点A(cosα,sinα),B(cosβ,sinβ),C(cosγ,sinγ),O为坐标原点.若向量
OA
+k
OB
+(2-k)
OC
=
O
(k为常数,且0<k<2),求cos(β-γ)最大值,最小值,以及相应的k值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为Sn,且Sn+an=-
1
2
n2-
3
2
n+1(n∈N*),设bn=an+n.
(Ⅰ)证明:数列{bn}是等比数列;
(Ⅱ)求数列{nbn}的前n项和Tn
(Ⅲ)设cn=(
1
2
n-an,dn=
cn2+cn+1
cn2+cn
,若数列{dn}的前2013项和为P,求不超过P的最大的整数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知平面上三个向量
a
b
c
,其中
a
=(1,2).
(1)若|
c
|=2
5
,且
c
a
,求
c
的坐标;
(2)若|
b
|=
5
2
,且
a
+2
b
与2
a
-
b
垂直,求
a
b
的夹角θ的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,角A,B,C的对边分别为a,b,c,a=3,b=5,
AC
CB
=
15
2

(1)求角C的值;  
(2)求sin(A+
π
3
)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知梯形ABCD中AD∥BC,∠ABC=∠BAD=
π
2
,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE=x.沿EF将梯形AEFD翻折,
使平面AEFD⊥平面EBCF(如图).G是BC的中点.
(1)当x=2时,求证:BD⊥EG;
(2)当x变化时,求三棱锥D-BCF体积的最大值.

查看答案和解析>>

同步练习册答案