精英家教网 > 高中数学 > 题目详情
已知数列{an}前n项和为Sn,且Sn=-n2+9n,n∈N+
(1)求{an}的通项;
(2)设Tn=|a1|+|a2|+…|an|,求Tn
分析:(1)①当n=1时,a1=S1=8,②当n≥2时,an=Sn-Sn-1=-2n+10,检验可得an=-2n+10;(2)可知数列的前5项≤0,从第6项开始全为负值,分类讨论可得.
解答:解:(1)①当n=1时,a1=S1=8…(2分)
②当n≥2时,an=Sn-Sn-1
=-n2+9n-[-(n-1)2+9(n-1)]

=-2n+10
检验:a1适合an=-2n+10…(5分)
综合①②得:an=-2n+10…(6分)
(2)①当n≤5时,Tn=|a1|+|a2|+…|an|=a1+a2+a3+…+an=-n2+9n…(8分)
②当n≥6时,Tn=|a1|+|a2|+…|an|=(a1+a2+…+a5)-(a6+a7+…+an
=2(a1+a2+…+a5)-(a1+a2+…+an)=n2-9n+40…(11分)
综合①②得:Tn=
-n2+9(n≤5)
n2-9n+40(n≥6)
…(12分)
点评:本题考查数列的求和,以及由数列的前n项和求其通项,涉及分类讨论的思想,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}前 n项和为Sn,且Sn=n2
(1)求{an}的通项公式    
(2)设 bn=
1anan+1
,求数列{bn}的前 n项 和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn和通项an满足Sn=-
1
2
(an-1)

(1)求数列{an}的通项公式; 
(2)试证明Sn
1
2

(3)设函数f(x)=log
1
3
x
,bn=f(a1)+f(a2)+…+f(an),求
1
b1
+
1
b2
+…+
1
b99
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=2n-1,则数列{an}的奇数项的前n项的和是
4n-1
3
4n-1
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=2an+2n
(Ⅰ)证明数列{
an
2n-1
}
是等差数列,并求{an}的通项公式;
(Ⅱ)若bn=
(n-2011)an
n+1
,求数列{bn}是否存在最大值项,若存在,说明是第几项,若不存在,请说明理由;
(Ⅲ)设Tn=|S1|+|S2|+|S3|+…+|Sn|,试比较
Tn+Sn
2
2-n
1+n
an
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}前n项和Sn=n2+2n,设bn=
1anan+1

(1)试求an
(2)求数列{bn}的前n项和Tn

查看答案和解析>>

同步练习册答案