精英家教网 > 高中数学 > 题目详情
14.王妈妈开了一家小型餐馆,为了节约服务生收费时间,她购进红、黄、蓝、绿四种颜色的盘子,用这几种颜色的盘子分别盛5元、8元、10元和12元的食品,这样结账的时候,只要数一下盘子就可以,请利用赋值语句描述用餐记费的算法.

分析 设置变量a,b,c,d分别表示用餐的红、黄、蓝、绿的盘子的个数,变量p表示金额.用输入与输出语句即可得解.

解答 解:程序如下:
          INPUT“a=”;a
          INPUT“b=”;b
          INPUT“c=”;c
          INPUT“d=”;d
              p=5*a+8*b+10*c+12*d
          PRINT“结账金额为”;p
          END

点评 本题主要考查了赋值语句的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.(I)证明:函数f(x)=$\frac{1}{x}$(1+x)ln(1+x)在区间(0,+∞)内为增函数;
(Ⅱ)设a>0,b>0,证明:(1+a+b)ln(1+a+b)>(1+a)ln(1+a)+(1+b)ln(1+b).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45,AP=AD=AC=2,E为PA的中点.
(Ⅰ)设面PAB∩面PCD=l,求证:CD∥l;
(Ⅱ)求二面角B-CE-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知抛物线Γ:x2=-4y的焦点为F.直线(1+3λ)x-(1+λ)y+2=0过定点M.则|MF|的值为(  )
A.3B.2C.$\sqrt{13}$D.$\sqrt{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设计一个程序,输人一个三位自然数,把这个数的百位数字与个位数字对调,输出对调后的数,(用“\”表示m除以n的商的整数部分,如$\frac{32}{10}=3$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=-x3+x2+bx,g(x)=alnx.
(1)若f(x)在x=$\frac{2}{3}$处取得极值,求实数b的值;
(2)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求实数a的取值范围;
(3)在(1)的条件下,设F(x)=$\left\{\begin{array}{l}{f(x),x<1}\\{g(x),x≥1}\end{array}\right.$对任意给定的正实数a,曲线y=F(x)上是否存在两点P、Q,使得△POQ是以O(O为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知直线y=x+1与函数f(x)=aex+b的图象相切,且f′(1)=e.
(I)求实数a,b的值;
(Ⅱ)若存在x∈(0,$\frac{3}{2}$),使得2mf(x-1)+nf(x)=mx(m≠0)成立,求$\frac{n}{m}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\sqrt{x}$在x=$\frac{1}{4}$处的切线为l,函数g(x)=kx+m(m≥0)的图象与l平行.
(1)当m=$\frac{9}{4}$时,求f(x)图象上的点到g(x)图象上点的最短距离;
(2)若不等式|f(x)-mg(x)|≤|f(x)|对x∈[1,4]恒成立,求m的取值区间M.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在等比数列{an}中,a6=$\frac{7}{32}$,q=$\frac{1}{2}$,求a3

查看答案和解析>>

同步练习册答案