分析 (I)由△ABD为等边三角形可得CG=$\sqrt{3}$=CF,于是CH⊥FG,由面面垂直的性质得出BD⊥平面ACFE,故BD⊥CH,从而得出CH⊥平面BDF;
(II)以G为原点,以GA,GB为坐标轴建立空间直角坐标系,求出$\overrightarrow{HQ}$和平面BEF的法向量$\overrightarrow{n}$的坐标,则QH与平面BEF所成角的正弦值等于|cos<$\overrightarrow{n},\overrightarrow{HQ}$>|.
解答
(Ⅰ)证明:∵ACFE为平行四边形,$AE=\sqrt{3}$,∴$CF=\sqrt{3}$,
∵四边形ABCD为菱形,∴AG=CG,BG=DG,AD=AB,
∵AB=BD=2,∴△ABD是以2为边长的等边三角形,
∴$AG=CG=\sqrt{3}$,∴CG=CF,
∵H为FG的中点,∴CH⊥GF.
∵四边形ABCD为菱形,∴BD⊥AC,
又∵平面ACFE⊥平面ABCD,平面ACFE∩平面ABCD=AC,
∴BD⊥平面ACFE,∵CH?平面ACFE,
∴BD⊥CH,又∵BD∩GF=G,BD?平面BDF,GF?平面BDF,
∴CH⊥平面BDF.
(Ⅱ)在面ACFE中,作GM⊥AC交EF于M,
∵平面ACFE⊥平面ABCD,∴GM⊥平面ABCD.
以G为原点,以GA,GB,GM为坐标轴建立空间直角坐标系如图所示:
则B(0,1,0),D(0,-1,0),G(0,0,0),A($\sqrt{3}$,0,0),C(-$\sqrt{3}$,0,0).
∵CH⊥FG,$CG=\sqrt{3}$,$CH=\frac{{\sqrt{3}}}{2}$,∴∠FGC=30°,HG=$\frac{3}{2}$.∴∠EAG=60°,
∴H(-$\frac{3\sqrt{3}}{4}$,0,$\frac{3}{4}$),F(-$\frac{3\sqrt{3}}{2}$,0,$\frac{3}{2}$),E($\frac{\sqrt{3}}{2}$,0,$\frac{3}{2}$).
∴$\overrightarrow{HF}$=(-$\frac{3\sqrt{3}}{4}$,0,$\frac{3}{4}$),$\overrightarrow{BE}$=($\frac{\sqrt{3}}{2}$,-1,$\frac{3}{2}$),$\overrightarrow{FE}$=(2$\sqrt{3}$,0,0),$\overrightarrow{FD}$=($\frac{3\sqrt{3}}{2}$,-1,-$\frac{3}{2}$).
∵Q是△DEF的重心,∴$\overrightarrow{FQ}$=$\frac{1}{3}$($\overrightarrow{FD}+\overrightarrow{FE}$)=($\frac{7\sqrt{3}}{6}$,-$\frac{1}{3}$,-$\frac{1}{2}$).
∴$\overrightarrow{HQ}$=$\overrightarrow{HF}$+$\overrightarrow{FQ}$=($\frac{5\sqrt{3}}{12}$,-$\frac{1}{3}$,$\frac{1}{4}$).
设面BEF的法向量为$\overrightarrow n=(x,y,z)$,则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{FE}=0}\\{\overrightarrow{n}•\overrightarrow{BE}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{2\sqrt{3}x=0}\\{\frac{\sqrt{3}}{2}x-y+\frac{3}{2}z=0}\end{array}\right.$,令z=2,得$\overrightarrow{n}$=(0,3,2).
∴$\overrightarrow{n}•\overrightarrow{HQ}$=-$\frac{1}{2}$,|$\overrightarrow{n}$|=$\sqrt{13}$,|$\overrightarrow{HQ}$|=$\frac{5}{6}$,
∴cos<$\overrightarrow{n},\overrightarrow{HQ}$>=$\frac{\overrightarrow{n}•\overrightarrow{HQ}}{|\overrightarrow{n}||\overrightarrow{HQ}|}$=-$\frac{{3\sqrt{13}}}{65}$.
∴QH与平面BEF所成角的正弦值为$\frac{{3\sqrt{13}}}{65}$.
点评 本题考查了线面垂直的判定,线面角的计算,空间向量的应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | $\sqrt{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$$\sqrt{2}$ | C. | $\frac{2\sqrt{5}}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com