【题目】已知集合A=(2,4),B=(a,3a)
(1)若AB,求实数a的取值范围;
(2)若A∩B≠,求实数a的取值范围.
科目:高中数学 来源: 题型:
【题目】某中学将100名高二文科生分成水平相同的甲、乙两个“平行班”,每班50人.陈老师采用A,B两种不同的教学方式分别在甲、乙两个班进行教改实验.为了了解教学效果,期末考试后,陈老师对甲、乙两个班级的学生成绩进行统计分析,画出频率分布直方图(如下图).记成绩不低于90分者为“成绩优秀”.
(Ⅰ)根据频率分布直方图填写下面2×2列联表;
甲班(A方式) | 乙班(B方式) | 总计 | |
成绩优秀 | |||
成绩不优秀 | |||
总计 |
(Ⅱ)判断能否在犯错误的概率不超过0.05的前提下认为:“成绩优秀”与教学方式有关?
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(, ),曲线在处的切线方程为.
(Ⅰ)求, 的值;
(Ⅱ)证明: ;
(Ⅲ)已知满足的常数为.令函数(其中是自然对数的底数, ),若是的极值点,且恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)当时,求函数的单调区间与极值;
(2)当时,令,若在上有两个零点,求实数的取值范围;
(3)当时,函数的图像上所有点都在不等式组所表示的平面区域内,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在研究塞卡病毒(Zika virus)某种疫苗的过程中,为了研究小白鼠连续接种该种疫苗后出现症状的情况,做接种试验,试验设计每天接种一次,连续接种3天为一个接种周期.已知小白鼠接种后当天出现症状的概率为,假设每次接种后当天是否出现症状与上次接种无关.
(1)若出现症状即停止试验,求试验至多持续一个接种周期的概率;
(2)若在一个接种周期内出现3次 症状,则这个接种周期结束后终止试验,试验至多持续3个周期,设接种试验持续的接种周期数为 ,求 的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商品在近30天内每件的销售价格P(元)与时间t(天)的函数是:P=
该商品的日销售量Q(件)与时间t(天)的函数关系是:Q=﹣t+40(0<t≤30,t∈N*),求这种商品的日销售金额的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】求满足下列条件的直线方程:
(1)求经过直线l1:x+3y﹣3=0,l2:x﹣y+1=0的交点,且平行于直线2x+y﹣3=0的直线l方程;
(2)求在两坐标轴上截距相等,且与点A(3,1)的距离为的直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com