精英家教网 > 高中数学 > 题目详情
19.已知命题p:“?x∈[1,2],$\frac{1}{2}$x2-ln x-a≥0”与命题q:“?x∈R,x2+2ax-8-6a=0”,若命题“p∧q”是真命题,则实数a的取值范围是(-∞,-4]∪[-2,$\frac{1}{2}$].

分析 解命题P是恒成立问题,利用变量分离,构造新函数,用最值法求解,命题q即为方程有解.

解答 解:∵?x∈[1,2],$\frac{1}{2}$x2-lnx-a≥0
∴a≤$\frac{1}{2}$x2-lnx,x∈[1,2]
令:f(x)=$\frac{1}{2}$x2-lnx,x∈[1,2]
则f′(x)=x-$\frac{1}{x}$,∵f′(x)>0
∴f(x)在[1,2]上增函数
∴f(x)的最小值为$\frac{1}{2}$,
∴a≤$\frac{1}{2}$,
又命题q:“?x∈R,x2+2ax-8-6a=0”是真命题,
∴△=4a2+32+24a≥0
∴a≥-2或a≤-4
又∵命题p:“?x∈[1,2],$\frac{1}{2}$x2-lnx-a≥0”
与命题q:“?x∈R,x2+2ax-8-6a=0”都是真命题
∴实数a的取值范围 是:(-∞,-4]∪[-2,$\frac{1}{2}$],
故答案为:(-∞,-4]∪[-2,$\frac{1}{2}$].

点评 本题通过常用逻辑用语来考查不等式怛成立问题和方程解的问题,难度空间很大,应熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow a=({1,-1}),\overrightarrow b=({6,-4})$,若$\overrightarrow a⊥({t\overrightarrow a+\overrightarrow b})$,则t的取值范围是-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知x,y满足$\left\{{\begin{array}{l}{x+y≤4}\\{x-y≥0}\\{x≥0}\end{array}}\right.$,若目标函数z=x+2y的最大值为n,则${(x-\frac{2}{{\sqrt{x}}})^n}$的常数项为(  )
A.240B.-240C.60D.16

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知p:“?k∈R,直线y=kx+1与椭圆x2+$\frac{y^2}{a}$=1有两个不同的公共点”;q:“?x0∈R,不等式4x0-2x0-a≤0成立”;若“p且q”是假命题,“p或q”是真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,直线L的参数方程是$\left\{\begin{array}{l}{x=2+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数),以O为极点,x轴的正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ2cos2θ+2ρ2sin2θ=12,且直线与曲线C交于P,Q两点
(1)求曲线C的普通方程及直线L恒过的定点A的坐标;
(2)在(1)的条件下,若|AP||AQ|=6,求直线L的普通方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知α为第二象限角,则$\frac{α}{2}$所在的象限是(  )
A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$A(cosα,\sqrt{3}sinα),B(2cosβ,\sqrt{3}sinβ),C(-1,0)$是平面上三个不同的点,且满足关系$\overrightarrow{CA}=λ\overrightarrow{BC}$,则实数λ的取值范围是[-2,1],λ≠0..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,已知圆O:x2+y2=4和点P(-1,0),过点P的直线l交圆O于A、B两点
(1)若|AB|=2$\sqrt{3}$,求直线l的方程;
(2)设弦AB的中点为M,求点M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=loga(1-x)+loga(x+3)(0<a<1).
(1)求函数f(x)的定义域;
(2)求方程f(x)=0的解;
(3)若函数f(x)的最小值为-4,求a的值.

查看答案和解析>>

同步练习册答案