| A. | -1 | B. | 1 | C. | 2 | D. | 4 |
分析 利用定积分的运算法则化简求解即可.
解答 解:${∫}_{1}^{2}$(x-a)dx=($\frac{1}{2}{x}^{2}-ax$)${|}_{1}^{2}$=$\frac{3}{2}-a$;
${∫}_{0}^{\frac{3π}{4}}$cos2xdx=$\frac{1}{2}sin2x{|}_{0}^{\frac{3π}{4}}$=$-\frac{1}{2}$,
∵${∫}_{1}^{2}$(x-a)dx=${∫}_{0}^{\frac{3π}{4}}$cos2xdx,∴$\frac{3}{2}-a=-\frac{1}{2}$,解得a=2.
故选:C.
点评 本题考查定积分的运算,考查计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,+∞] | B. | (0,1) | C. | [-9,+∞) | D. | [-9,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com