分析 (1)f(x)的定义域为R,则$\left\{\begin{array}{l}{a>0}\\{△<0}\end{array}\right.$,即可求出a的取值范围;
(2)首先求出命题q为真命题时a的取值范围,再由条件p∨q为真命题,p∧q为假命题,可知命题p与q必然一真一假,分类讨论即可.
解答 解:(1)若p为真命题,则ax2-4x+a>0对?x∈R恒成立,
即$\left\{\begin{array}{l}{a>0}\\{△=16-4{a}^{2}<0}\end{array}\right.$,解得a>2;
(2)g(x)=2|x-a|=$\left\{\begin{array}{l}{{2}^{x-a},x≥a}\\{{2}^{-x+a},x<a}\end{array}\right.$,若q为真命题,则a≤3,
又“p∨q”为真命题,“p∧q”为假命题,则p,q一真一假,
当p真q假时,则 $\left\{\begin{array}{l}{a>2}\\{a>3}\end{array}\right.$,故a>3;
当p假q真时,则$\left\{\begin{array}{l}{a≤2}\\{a≤3}\end{array}\right.$,故a≤2;
综上可得,a≤2,或a>3.
点评 本题主要考查复合命题真假关系的应用以及指数函数与对数函数的性质,根据条件求出命题的等价条件是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | PC⊥CB | B. | BC⊥平面PAC | ||
| C. | AC⊥PB | D. | PB与平面PAC的夹角是∠BPC |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({-1,-\frac{1}{2}}]$ | B. | $[{-\frac{1}{2},0})$ | C. | [1,+∞) | D. | $[{-\frac{1}{2},+∞})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x+2y-3=0 | B. | x+2y-3=0 | C. | 2x+y-3=0 | D. | 2x+2y+3=0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com